Backpack Sprayer Calibration

Tom Getts tjgetts@ucanr.edu Scott Oneto sroneto@ucdavis.edu University of California Cooperative Extension

What is Sprayer Calibration?

Ensuring the correct volume of pesticide is coming out of the sprayer over a given area.
Carrier Volume = gallons per acre

$$
G P A=\frac{\text { Flow Rate }\left(\frac{\text { gallons }}{\text { time }}\right)}{\text { Land Rate }\left(\frac{\text { acres }}{\text { time }}\right)}
$$

$$
G P A=\frac{\text { Nozzle Output }(G P M) \times 5940}{\text { Speed }(M P H) \times \text { Spray Width }(\text { inches })}
$$

- Influenced by nozzle flow rate, speed, spray width, and pressure

How do I change GPA?

Pressure

* Adjust pressure only to make small changes in application rate (fine tuning)
* Must quadruple pressure to double GPA. Most nozzles will not tolerate quadruple pressure changes

Speed

* Speed and GPA is a 1:1 relationship
* 100\% decrease in GPA = 100% increase in speed

Nozzle

* Best way to adjust output
* Can choose desired output, pattern, and droplet size

University of California
Agriculture and Natural Resources

Herbicide Rates

- Amount of Product Per Acre
- 1 Acre- is about 1 football field
- Glyphosate-1 Quart
- Aminopyralid-7oz
- Chlorsulfuron-1oz
- Carrier Volume
- 20-150 Gallons/acre (backpacks)

University of California
Agriculture and Natural Resources

Why is Sprayer Calibration Important?

Backpacks

- EVERYONE NEEDS TO CALIBRATE!
- Variables include
- Speed
- Walking
- Arm movement
- Person to Person
- Fast vs Slow
- "Spray to Wet"
- Pressure
- Nozzle
- Need to Know Output!

Importance of Nozzle Selection

1. Spray Pattern: Nozzles break the liquid into droplets and form the spray pattern.
2. Spray Rate: Nozzles determine the application volume at a given pressure, travel speed and spacing.
3. Spray Drift: Selecting nozzles that produce the largest droplet size, while providing good coverage will minimize drift.

University of California
Agriculture and Natural Resources

Decoding Nozzles

- Most nozzles use a 4-5 digit number to identify multiple characteristics
- First number is the spray angle (most common are 80° and 110°)
- Second number represents spray volume at rated pressure

80-degree spray angle
0.2 GPM (Gallons per Minute) at 40 psi

110-degree spray angle
0.4 GPM (Gallons per Minute) at 40 psi

Decoding Nozzles

- Other designations can include materials
- BR: Brass
- SS: Stainless Steel
- HS: Hardened Stainless Steel
- VP: Polymer with VisiFlo color coding
- VH: Hardened stainless steel with color coding
- VK: Ceramic with color coding
- VS: Stainless steel with color coding

Color Coding Nozzles

Is there a correct GPA?

- Dependent on numerous factors
- Crops: 10 to 20 GPA is standard
- Rangeland: 20 to 40 GPA is more common
- Backpack or spray guns with a hose: 20 to 150 GPA
- Type of herbicide being applied generally dictates GPA
- Contact herbicides require higher rates (Pre's)
- Systemic herbicides lower rates
- Herbicide labels provide a range of recommended carrier volumes

Agriculture and Natural Resources

Sprayer Calibration Doesn't Have to be Hard

- Easy- $128^{\text {th }}$ method

University of California
Agriculture and Natural Resources

There must be a

 better way!
1 Acre
 (43,560 ft²)

How am I supposed to figure out my output?

The $128^{\text {th }}$ method breaks up an acre into 128 pieces

1/128th							

Since there are 128 ounces in a gallon, ounces sprayed in this area equals gallons per acre!
$1 / 128^{\text {th }}$
Acre (360 ft²)
18.5'
18.5'

Items you will need to calibrate

1. Clean sprayer
2. Water
3. Personal protective equipment
4. Stopwatch
5. Measuring tape
6. Four flags or markers
7. Clear measuring cup or pitcher (in ounces)

Calibration Steps

1. Measure and mark $1 / 128^{\text {th }}$ of an acre ($340 \mathrm{ft}^{2}$).

Area should represent area to be treated.

- $18.5^{\prime} \times 18.5^{\prime}$
- $10^{\prime} \times 34^{\prime}$

2. Wear PPE.
3. Fill clean sprayer with water.
4. Spray area and record the amount of time. Repeat 2 or 3 times to get average.
5. Spray for the same amount of time into a bucket.
6. Measure volume of water in ounces.
7. Volume in ounces = gallons per acre.

$1 / 128^{\text {th }}$
Acre
18.5^{\prime}

128 Method Example

Calibration Steps

1. Measure and mark $1 / 128^{\text {th }}$ of an acre ($340 \mathrm{ft}^{2}$). 18.5' $\times 18.5^{\prime}$
2. Wear PPE
3. Fill clean sprayer with water
4. Spray area and record the amount of time 35 seconds
5. Spray into a bucket for 35 seconds
6. Measure volume of water in ounces = 30 ounces
7. Volume in ounces = gallons per acre
$1 / 128^{\text {th }}$
Acre
18.5^{\prime} 30 ounces $=30$ GPA (gallons per acre)

What if I want to spray at 20 GPA?

University of California
Agriculture and Natural Resources

How do I change GPA?

Pressure

* Adjust pressure only to make small changes in application rate (fine tuning)
* Must quadruple pressure to double GPA. Most nozzles will not tolerate quadruple pressure changes

30 GPA @ 40 PSI = 15 GPA @ 10 PSI

Speed

* Speed and GPA is a 1:1 relationship
* 100\% decrease in GPA = 100\% increase in speed

Current Nozzle = 8004XR
Change to 8002XR

IIP PART NO. (STRAINER MESH SIZE)	$\mathrm{SSI}_{\mathrm{PS}}$	$\begin{aligned} & \text { DROP } \\ & \text { SIZE } \end{aligned}$		CAPACITY ONE TIP IN GPM	CAPACITY ONE TIP IN OZ/MIN	APPLICATION RATE FOR 20 " SPRAY TIP SPACING												
				GALLONS PER ACRE (GPA)		TURF APPLICATION GALLONS PER 1000 SQ. FT.												
		80°	110°			4 MPH	5 MPH	6 MPH	8 MPH	10 MPH	12 MPH	15 MPH	20 MPH	2 MPH	3 MPH	4 MPH	5 MPH	
XR8001 XR11001 (100)	15	F	F		0.061	7.8	4.5	3.6	3.0	2.3	1.8	1.5	1.2	0.91	0.21	0.14	0.10	0.08
	20	F	F	0.071	9.1	5.3	4.2	3.5	2.6	2.1	1.8	1.4	1.1	0.24	0.16	0.12	0.10	
	30	F	F	0.087	11	6.5	5.2	4.3	3.2	2.6	2.2	1.7	1.3	0.30	0.20	0.15	0.12	
	40	F	F	0.10	13	7.4	5.9	5.0	3.7	3.0	2.5	2.0	1.5	0.34	0.23	0.17	0.14	
	50	F	F	0.11	14	8.2	6.5	5.4	4.1	3.3	2.7	2.2	1.6	0.37	0.25	0.19	0.15	
	60	F	VF	0.12	15	8.9	7.1	5.9	4.5	3.6	3.0	2.4	1.8	0.41	0.27	0.20	0.16	
XR80015 XR110015 (100)	15	M	M	0.092	12	6.8	5.5	4.6	3.4	2.7	2.3	1.8	1.4	0.31	0.21	0.16	0.13	
	20	F	F	0.11	14	8.2	6.5	5.4	4.1	3.3	2.7	2.2	1.6	0.37	0.25	0.19	0.15	
	30	F	F	0.13	17	9.7	7.7	6.4	4.8	3.9	3.2	2.6	1.9	0.44	0.29	0.22	0.18	
	40	F	F	0.15	19	11.1	8.9	7.4	5.6	4.5	3.7	3.0	2.2	0.51	0.34	0.26	0.20	
	50	F	F	0.17	22	12.6	10.1	8.4	6.3	5.0	4.2	3.4	2.5	0.58	0.39	0.29	0.23	
	60	F	F	0.18	23	13.4	10.7	8.9	6.7	5.3	4.5	3.6	2.7	0.61	0.41	0.31	0.24	
XR8002 XR11002 (50)	15	M	M	0.12	15	8.9	7.1	5.9	4.5	3.6	3.0	2.4	1.8	0.41	0.27	0.20	0.16	
	20	M	M	0.14	18	10.4	8.3	6.9	5.2	4.2	3.5	2.8	2.1	0.48	0.32	0.24	0.19	
	30	F	F	0.17	22	12.6	10.1	8.4	6.3	5.0	4.2	3.4	2.5	0.58	0.39	0.29	0.23	
	40	F	F	0.20	26	14.9	11.9	9.9	7.4	5.9	5.0	4.0	3.0	0.68	0.45	0.34	0.27	
	50	F	F	0.22	28	16.3	13.1	10.9	8.2	6.5	5.4	4.4	3.3	0.75	0.50	0.37	0.30	
	60	F	F	0.24	31	17.8	14.3	11.9	8.9	7.1	5.9	4.8	3.6	0.82	0.54	0.41	0.33	
XR80025 XR110025 (50)	15	M	M	0.15	19	11.1	8.9	7.4	5.6	4.5	3.7	3.0	2.2	0.51	0.34	0.26	0.20	
	20	M	M	0.18	23	13.4	10.7	8.9	6.7	5.3	4.5	3.6	2.7	0.61	0.41	0.31	0.24	
	30	M	M	0.22	28	16.3	13.1	10.9	8.2	6.5	5.4	4.4	3.3	0.75	0.50	0.37	0.30	
	40	F	F	0.25	32	18.6	14.9	12.4	9.3	7.4	6.2	5.0	3.7	0.85	0.57	0.43	0.34	
	50	F	F	0.28	36	21	16.6	13.9	10.4	8.3	6.9	5.5	4.2	0.95	0.63	0.48	0.38	
	60	F	F	0.31	40	23	18.4	15.3	11.5	9.2	7.7	6.1	4.6	1.1	0.70	0.53	0.42	
XR8003 XR11003 (50)	15	M	M	0.18	23	13.4	10.7	8.9	6.7	5.3	4.5	3.6	2.7	0.61	0.41	0.31	0.24	
	20	M	M	0.21	27	15.6	12.5	10.4	7.8	6.2	5.2	4.2	3.1	0.71	0.48	0.36	0.29	
	30	M	M	0.26	33	19.3	15.4	12.9	9.7	7.7	6.4	5.1	3.9	0.88	0.59	0.44	0.35	
	40	F	F	0.30	38	22	17.8	14.9	11.1	8.9	7.4	5.9	4.5	1.0	0.68	0.51	0.41	
	50	F	F	0.34	44	25	20	16.8	12.6	10.1	8.4	6.7	5.0	1.2	0.77	0.58	0.46	
	60	F	F	0.37	47	27	22	18.3	13.7	11.0	9.2	7.3	5.5	1.3	0.84	0.63	0.50	
XR80035 (50)	15	M		0.21	27	15.6	12.5	10.4	7.8	6.2	5.2	4.2	3.1	0.71	0.48	0.36	0.29	
	20	M		0.25	32	18.6	14.9	12.4	9.3	7.4	6.2	5.0	3.7	0.85	0.57	0.43	0.34	
	30	M		0.30	38	22	17.8	14.9	11.1	8.9	7.4	5.9	4.5	1.0	0.68	0.51	0.41	
	40	M		0.35	45	26	21	17.3	13.0	10.4	8.7	6.9	5.2	1.2	0.79	0.60	0.48	
	50	F		0.39	50	29	23	19.3	14.5	11.6	9.7	7.7	5.8	1.3	0.88	0.66	0.53	
	60	F		0.43	55	32	26	21	16.0	12.8	10.6	8.5	6.4	1.5	0.97	0.73	0.58	
XR8004 XR11004 (50)	15	M	M	0.24	31	17.8	14.3	11.9	8.9	7.1	5.9	4.8	3.6	0.82	0.54	0.41	0.33	
	20	M	M	0.28	36	21	16.6	13.9	10.4	8.3	6.9	5.5	4.2	1.0	0.63	0.48	0.38	
	30	M	M	0.35	45	26	21	17.3	13.0	10.4	8.7	6.9	5.2	1.2	0.79	0.60	0.48	
	40	M	M	0.40	51	30	24	19.8	14.9	11.9	9.9	7.9	5.9	1.4	0.91	0.68	0.54	
	50	F	F	0.45	58	33	27	22	16.7	13.4	11.1	8.9	6.7	1.5	1.0	0.77	0.61	
	60	F	F	0.49	63	36	29	24	18.2	14.6	12.1	9.7	7.3	1.7	1.1	0.83	0.67	

@ 40 PSI = 30 GPA

IIP PART NO. (STRAINER MESH SIZE)	$\mathrm{YSI}_{\mathrm{PS}}$	$\begin{aligned} & \text { DROP } \\ & \text { SIZE } \end{aligned}$		CAPACITY ONE TIP IN GPM	$\begin{aligned} & \text { CAPACITY } \\ & \text { ONE TIP } \\ & \text { IN OZ/MIN } \end{aligned}$	APPLICATION RATE FOR 20 " SPRAY TIP SPACII								
				GALLONS PER ACRE (GPA)										
		80°	110°			4 MPH	5 MPH	6 MPH	8 MPH	10 MPH	12 MPH	15 MPH	20 MPH	
XR8004 XR11004 (50)	15	M	M		0.24	31	17.8	14.3	11.9	8.9	7.1	5.9	4.8	3.6
	20	M	M	0.28	36	21	16.6	13.9	10.4	8.3	6.9	5.5	4.2	
	30	M	M	0.35	45	26	21	17.3	13.0	10.4	8.7	6.9	5.2	
	40	M	M	0.40	51	30	24	19.8	14.9	11.9	9.9	7.9	5.9	
	50	F	F	0.45	58	33	27	22	16.7	13.4	11.1	8.9	6.7	
	60	F	F	0.49	63	36	29	24	18.2	14.6	12.1	9.7	7.3	

@ 40 PSI $=30$ GPA @ 4 MPH

IIP PART NO. (STRAINER MESH SIZE)	$\mathrm{SSI}_{\mathrm{PS}}$	$\begin{aligned} & \text { DROP } \\ & \text { SIZE } \end{aligned}$		CAPACITY ONE TIP IN GPM	CAPACITY ONE TIP IN OZ/MIN	APPLICATION RATE FOR 20 " SPRAY TIP SPACING												
				GALLONS PER ACRE (GPA)		TURF APPLICATION GALLONS PER 1000 SQ. FT.												
		80°	110°			4 MPH	5 MPH	6 MPH	8 MPH	10 MPH	12 MPH	15 MPH	20 MPH	2 MPH	3 MPH	4 MPH	5 MPH	
XR8001 XR11001 (100)	15	F	F		0.061	7.8	4.5	3.6	3.0	2.3	1.8	1.5	1.2	0.91	0.21	0.14	0.10	0.08
	20	F	F	0.071	9.1	5.3	4.2	3.5	2.6	2.1	1.8	1.4	1.1	0.24	0.16	0.12	0.10	
	30	F	F	0.087	11	6.5	5.2	4.3	3.2	2.6	2.2	1.7	1.3	0.30	0.20	0.15	0.12	
	40	F	F	0.10	13	7.4	5.9	5.0	3.7	3.0	2.5	2.0	1.5	0.34	0.23	0.17	0.14	
	50	F	F	0.11	14	8.2	6.5	5.4	4.1	3.3	2.7	2.2	1.6	0.37	0.25	0.19	0.15	
	60	F	VF	0.12	15	8.9	7.1	5.9	4.5	3.6	3.0	2.4	1.8	0.41	0.27	0.20	0.16	
XR80015 XR110015 (100)	15	M	M	0.092	12	6.8	5.5	4.6	3.4	2.7	2.3	1.8	1.4	0.31	0.21	0.16	0.13	
	20	F	F	0.11	14	8.2	6.5	5.4	4.1	3.3	2.7	2.2	1.6	0.37	0.25	0.19	0.15	
	30	F	F	0.13	17	9.7	7.7	6.4	4.8	3.9	3.2	2.6	1.9	0.44	0.29	0.22	0.18	
	40	F	F	0.15	19	11.1	8.9	7.4	5.6	4.5	3.7	3.0	2.2	0.51	0.34	0.26	0.20	
	50	F	F	0.17	22	12.6	10.1	8.4	6.3	5.0	4.2	3.4	2.5	0.58	0.39	0.29	0.23	
	60	F	F	0.18	23	13.4	10.7	8.9	6.7	5.3	4.5	3.6	2.7	0.61	0.41	0.31	0.24	
XR8002 XR11002 (50)	15	M	M	0.12	15	8.9	7.1	5.9	4.5	3.6	3.0	2.4	1.8	0.41	0.27	0.20	0.16	
	20	M	M	0.14	18	10.4	8.3	6.9	5.2	4.2	3.5	2.8	2.1	0.48	0.32	0.24	0.19	
	30	F	F	0.17	22		10.1	8.4	6.3	5.0	4.2	3.4	2.5	0.58	0.39	0.29	0.23	
	40	F	F	0.20	26	14.9	11.9	9.9	7.4	5.9	5.0	4.0	3.0	0.68	0.45	0.34	0.27	
	50	F	F	0.22	28		13.1	10.9	8.2	6.5	5.4	4.4	3.3	0.75	0.50	0.37	0.30	
	60	F	F	0.24	31	17.8	14.3	11.9	8.9	7.1	5.9	4.8	3.6	0.82	0.54	0.41	0.33	
XR80025 XR110025 (50)	15	M	M	0.15	19	11.1	8.9	7.4	5.6	4.5	3.7	3.0	2.2	0.51	0.34	0.26	0.20	
	20	M	M	0.18	23	13.4	10.7	8.9	6.7	5.3	4.5	3.6	2.7	0.61	0.41	0.31	0.24	
	30	M	M	0.22	28	16.3	13.1	10.9	8.2	6.5	5.4	4.4	3.3	0.75	0.50	0.37	0.30	
	40	F	F	0.25	32	18.6	14.9	12.4	9.3	7.4	6.2	5.0	3.7	0.85	0.57	0.43	0.34	
	50	F	F	0.28	36	21	16.6	13.9	10.4	8.3	6.9	5.5	4.2	0.95	0.63	0.48	0.38	
	60	F	F	0.31	40	23	18.4	15.3	11.5	9.2	7.7	6.1	4.6	1.1	0.70	0.53	0.42	
XR8003 XR11003 (50)	15	M	M	0.18	23	13.4	10.7	8.9	6.7	5.3	4.5	3.6	2.7	0.61	0.41	0.31	0.24	
	20	M	M	0.21	27	15.6	12.5	10.4	7.8	6.2	5.2	4.2	3.1	0.71	0.48	0.36	0.29	
	30	M	M	0.26	33	19.3	15.4	12.9	9.7	7.7	6.4	5.1	3.9	0.88	0.59	0.44	0.35	
	40	F	F	0.30	38	22	17.8	14.9	11.1	8.9	7.4	5.9	4.5	1.0	0.68	0.51	0.41	
	50	F	F	0.34	44	25	20	16.8	12.6	10.1	8.4	6.7	5.0	1.2	0.77	0.58	0.46	
	60	F	F	0.37	47	27	22	18.3	13.7	11.0	9.2	7.3	5.5	1.3	0.84	0.63	0.50	
XR80035 (50)	15	M		0.21	27	15.6	12.5	10.4	7.8	6.2	5.2	4.2	3.1	0.71	0.48	0.36	0.29	
	20	M		0.25	32	18.6	14.9	12.4	9.3	7.4	6.2	5.0	3.7	0.85	0.57	0.43	0.34	
	30	M		0.30	38	22	17.8	14.9	11.1	8.9	7.4	5.9	4.5	1.0	0.68	0.51	0.41	
	40	M		0.35	45	26	21	17.3	13.0	10.4	8.7	6.9	5.2	1.2	0.79	0.60	0.48	
	50	F		0.39	50	29	23	19.3	14.5	11.6	9.7	7.7	5.8	1.3	0.88	0.66	0.53	
	60	F		0.43	55	32	26	21	16.0	12.8	10.6	8.5	6.4	1.5	0.97	0.73	0.58	
XR8004 XR11004 (50)	15	M	M	0.24	31	17.8	14.3	11.9	8.9	7.1	5.9	4.8	3.6	0.82	0.54	0.41	0.33	
	20	M	M	0.28	36	21	16.6	13.9	10.4	8.3	6.9	5.5	4.2	1.0	0.63	0.48	0.38	
	30	M	M	0.35	45		21	17.3	13.0	10.4	8.7	6.9	5.2	1.2	0.79	0.60	0.48	
	40	M	M	0.40	51	30	24	19.8	14.9	11.9	9.9	7.9	5.9	1.4	0.91	0.68	0.54	
	50	F	F	0.45	58		27	22	16.7	13.4	11.1	8.9	6.7	1.5	1.0	0.77	0.61	
	60	F	F	0.49	63	36	29	24	18.2	14.6	12.1	9.7	7.3	1.7	1.1	0.83	0.67	

@ 40 PSI = 15 GPA

@ 40 PSI = 30 GPA

Rate based on ounces/acre

- Example: You need to apply an herbicide at 32 ounces per acre with a 4-gallon backpack sprayer. How much herbicide goes in each tank?
- Step \#1: Need to know your output in GPA!
- Do the $128^{\text {th }}$ method "or"
- Use nozzle rating in catalog
- Output: 40 GPA

$$
\frac{1 \mathrm{ac}}{40 \mathrm{gat}} \times \frac{4 \mathrm{gal}}{\operatorname{tank}} \times \frac{32 \mathrm{oz}}{\text { ac }}=3.2 \mathrm{oz} / \operatorname{tank}
$$

Breakdown the math

- Backpack
-4-gallon/load
- 40 GPA
- How many tanks per acre? $\frac{40 \text { gal }}{\mathrm{ac}} \times \frac{1 \text { tank }}{4 \text { gal }}=10$ tanks/ac
- How much material per tank? $\frac{a c}{10 \operatorname{tanks}} \times \frac{32 \mathrm{oz}}{\frac{a c}{a c}}=3.2 \mathrm{oz} / \operatorname{tank}$

Rate based on quarts/acre

- Example: You need to apply an herbicide using a 4-gallon backpack sprayer at 20 GPA at a rate of 4 quarts/acre. How much herbicide and solution will be needed to treat $8,000 \mathrm{ft}^{2}$. If you want to add a surfactant at 0.5% volume, how much goes in the tank?

$$
\begin{aligned}
& \frac{20 \mathrm{gal}}{\mathrm{a}} \times \frac{1 \mathrm{az}}{43,560 \mathrm{ftz}} \times \frac{8,000 \mathrm{fzz}}{}=3.67 \text { gallons } \\
& \frac{4 \mathrm{qts}}{\mathrm{a}} \times \frac{1 \mathrm{ac}}{43,560 \mathrm{ftz}} \times \frac{8,000 \mathrm{ftz}}{}=0.73 \text { quarts } \quad 0.73 \text { quarts } \times 32 \text { ounces } / \mathrm{qt}=23.3 \mathrm{oz} \\
& \frac{3.67 \mathrm{gal}}{\frac{128 \mathrm{oz}}{\mathrm{gat}} \times \frac{0.5 \% \mathrm{Fv}}{\% \mathrm{~V}}=2.3 \mathrm{oz}}
\end{aligned}
$$

Rate given as percent solution

- Example: You need to apply an herbicide at a 2% solution in a 4 -gallon backpack sprayer. How much herbicide goes in each tank?
- Backpack sprayer:
- 4-gallon capacity
- Output: 20 gpa
$\frac{2 \% \text { herbicide }}{\text { \% vtotalsolution }} \times \frac{128 \mathrm{oz}}{\text { gallen }} \times \frac{4 \mathrm{gal}}{\operatorname{tank}}=10.24 \mathrm{oz} / \operatorname{tank}$

\% Volume Rate Doesn't Account for Output

GPA	\% Volume Rate	Amount of Herbicide Gallons/Acre
20	2	.2
50	2	.5
100	2	1.0
150	2	1.5

IMPORTANT: \% Volume rates on labels are based on an application rate of 20 GPA.

University of California
Agriculture and Natural Resources

Study Examining the Efficiency of Hand Weed Spraying

- Conducted a series of sprayer calibration workshops
- 80 experienced applicators
- Backpack
- Orchard gun
- Spot

Sprayer type	Mean GPA	GPA Range	1% glyphosate Gallons/acre
Backpack	41	$10-100$	0.41
Orchard Gun	127	$24-352$	1.3
Spot Spray	628	$80-1560$	6.3

University of California
Agriculture and Natural Resources

What if you have a spray crew and want everyone to be at 20 GPA?

Do the $128^{\text {th }}$ in reverse!

- Determine the time it takes to spray 20 ounces
- Practice spraying the marked $128^{\text {th }}$ area in that amount of time

Or modify equipment (different nozzle) for each user.
$1 / 128^{\mathrm{th}}$
Acre

Questions?

Post Test!

University of California
Agriculture and Natural Resources

Post Test

1. Which of the herbicide toxicity categories (warning, danger, caution) is the most toxic?

DANGER

University of California
Agriculture and Natural Resources

Post Test

2. If you are applying a foliar herbicide at a $2 \%(v / v)$ to treat Himalayan blackberries, how many ounces of herbicide would you put in a 4-gallon sprayer?
$\frac{128 \mathrm{oz}}{\text { gallon }} \times \frac{4 \text { gal }}{\operatorname{tank}}=512 \mathrm{oz} / \operatorname{tank}$
512 oz
$\frac{512 \mathrm{oz}}{\operatorname{tank}} * .02(2 \%)=10.24 \mathrm{oz}$ herbicide $/ \mathrm{tank}$
University of California
Agriculture and Natural Resources

Post Test

2. a. For your same Himalayan blackberry application, you want to add a surfactant at $0.25 \% \mathrm{v} / \mathrm{v}$. How much surfactant (in oz) would you add to your 4-gallon tank?
$\frac{128 \mathrm{oz}}{\text { gallon }} \times \frac{4 \text { gal }}{\operatorname{tank}}=512 \mathrm{oz} / \operatorname{tank}$
512 oz
$\frac{512 \mathrm{z}}{\operatorname{tank}} * .0025(0.25 \%)=1.28 \mathrm{oz}$ surfactant/tank
University of California
Agriculture and Natural Resources

Post Test

3. You are spraying a patch of perennial pepperweed with another herbicide. This herbicide does not give instructions on a $\% \mathrm{v} / \mathrm{v}$ basis, but gives rates on a per acre basis. If your backpack sprayer volume output is 37 gallons/acre (HINT: This is step 5 in the 1/128th acre worksheet), how many ounces of the herbicide would you put in the 3gallon tank, to spray $2 \mathrm{oz} / \mathrm{acre}$?

$$
\frac{1 \mathrm{ac}}{37 \text { gal }} \times \frac{3 \text { gal }}{\operatorname{tank}} \times \frac{2 \mathrm{oz}}{\text { ac }}=0.16 \mathrm{oz} / \operatorname{tank}
$$

University of California
Agriculture and Natural Resources

Questions?

