

Biogeographical patterns of the rhizosphere microbiome of a native and invasive grass in the western United States

Plus other ongoing cheatgrass studies

Rebecca Mueller, USDA ARS Invasive Species and Pollinator Health unit

Nemesis of the west: Cheatgrass

- Less desirable forage for livestock and wildlife
- Increase fire risk, intensity and frequency
- Displaces native plant species
- Altered soil nutrient levels and cycles

Chemical and biological agents for control

- Biocontrols like ACK55 (*Pseudomonas*) showed early promise, but ACK55 has had limited success in the field
- Chemical herbicides are widely used and effective (at least short term), but do they harm/alter the soil microbiome?
 - Increased antibiotic resistance found with broadly used herbicides

Chemical suppression of invasive annuals, but short-lived effects

- 4-Battalion Pro + Imazapic

Quest to identify better restoration tools

- Limited understanding of the fundamental ecology of many invasive species, such as cheatgrass
 - Soil alterations
 - Root exudate production
 - Allelopathy
 - Interactions with the microbiome
 - Rhizosphere
 - Seed endophytes
- How might this knowledge improve approaches to widespread control?

Results from other studies

Albright et al. 2017

- Both studies done in Utah
- Multiple time points (Albright), two depths (Reitstetter)
- Significant shifts in community similarity, decreased fungal

diversity

• Higher N mineralization in experimental cheatgrass plots

Spatial sampling: Cheatgrass and squirreltail

- Rhizosphere soil sampling
 - Microbiome: <u>targeted</u> and shotgun
 - Soil characteristics (chemistry, <u>pH</u>)
 - Culturing for potential biocontrol
 Pseudomonas
- Seed collection
 - Endophytes

Sampling: soils and seeds

- Select paired cheatgrass and *Elymus* plants of similar size and developmental stage
- Collect soils at the base of the plant, targeting the root zone
- Stabilize DNA and RNA with chemical solution for amplicon, metaG
- Collect additional soils for pH, culturing and chemical analyses (ongoing)
- Collect seeds from cheatgrass and *Elymus*, plus any other mature native grasses

	<u>Temperature</u>		<u>рН</u>		Ecosystem
	Bromus	Elymus	Bromus	Elymus	
SNARL, CA	22.2	21.8	6.36	6.47	Sagebrush
Sweeney, CA	20.8	20.8	6.88	6.66	Pinyon-juniper
Flagstaff, AZ*	25.4	22.4	6.71	6.70	Ponderosa
Doney Park, AZ	22.0	21.0	6.46	6.40	Pinyon-juniper
Virginia City, NV	16.5	16.3	6.90	6.84	Sagebrush
Cedar City, UT	21.4	20.7	7.17	7.11	Sagebrush-oak
Moab, UT	35.9	35.7	9.15	8.91	Pinyon-juniper
Dubois, ID	20.4	19.4	7.19	7.16	Sagebrush
Boise, ID	16.3	15.8	7.35	7.04	Sagebrush
Bearcreek, MT	21.5	20.7	9.06	8.65	Sagebrush
Yreka, CA	21.0	20.4	8.07	8.01	Juniper
Susanville, CA	18.9	17.7	7.40	7.28	Sagebrush
Winnemucca, NV*	19.9	22.5	8.31	7.84	Sagebrush
Wellington, NV*	24.2	23.1	7.38	7.44	Pinyon-juniper
Tonopah, NV*	21.1	20	8.01	7.82	Rabbitbrush
Kanab, UT*	21.6	20.8	8.43	8.63	Pinyon-juniper
Emblem, WY*	23.9	23.4	8.49	7.9	Sagebrush
	21.9	21.3	7.81	7.66	

*Smaller scale sites

Rhizosphere microbiome: preliminary results for LSU

- Site differences, no effect of plant species
 - Low replication
 - Additional sites currently on the MiSeq

Alternative targets for cheatgrass biocontrol

- Short-lived effects of herbicides suggest we need to target the seed bank for effective control
- Vertical transmission of endophytes in grasses, including *Bromus*
- No studies to date on the seed endophyte community of cheatgrass

Penicillium seed endophytes in *Triticum* increased drought tolerance (Vujanovic et al. 2019)

Characterizing cheatgrass seed endophytes

Critical questions:

- 1. Do endophytes promote survival of cheatgrass?
- 2. Is there a common seed endophyte community across the range of cheatgrass?
- 3. Can we target the endophytes with biocontrol as a way for more effective, longer-term control of cheatgrass?

Preliminary seed analysis

- Amplification of plant DNA during PCR reduced fungal sequences
- Cladosporium species identified from Boise seeds

 Ongoing culture and cultureindependent analyses of cheatgrass and *Elymus* endophytes from 2022 and 2023

Naturally occurring pathogens: Smut and "Black fingers of death"

- Smut fungi and Pyrenophora kill cheatgrass seeds, but not at sufficient levels to control invasions
- Geographic distributions are not well known
- Genetic characterizations are patchy, particularly wholegenomes

Can we identify local *Pseudomonas* strains for control?

- Most bioherbicide and plant growth promoting strains cluster together
- Some related to CB-4 bioherbicide strain (crabgrass herbicide)
- 16S does not capture functional differences
- Genomic sequencing of known and new isolates forthcoming!

Questions?

