Biological Control of Aquatic Plants: the USDA's Research Program and Status Update

Paul D. Pratt, Ph.D. USDA-ARS Invasive Species and Pollinator Health Research Unit Albany, CA

Aquatic weeds

- Difficult to control
 - Transient (float away!)
 - Disperse easily (fragmentation, clones)
 - Inaccessible (below water surface, remote locations)
 - Management can affect other species (low O)
 - All hands on deck!

Biocontrol of Aquatic Weeds

Long history

- Alligatorweed (*Alternanthera* philoxeroides)
- Agasicles hygrophila
 - Released: 1964
- Complete control in the southern US!
 - No other management required.

What have you done for me lately?

- "Success on the first try was the Achilles heal of biocontrol" J. Madsen
- Expectations are high.
- Seeking to replicate this success ever since.
- Benefits of aquatic weed biocontrol are more nuanced.

Featured target list

- Water hyacinth (*Eichhornia crassipes*)
- Giant reed (Arundo donax)
- Invasive water-primrose (*Ludwigia* spp.)
- Brazilian waterweed (Egeria densa)
- Alligator weed (Alternanthera philoxeroides)
- Pampas and jubata grass (Cortaderia spp.)

Delta drama

Water hyacinth

Water Hyacinth Biological Control Agents Released in California

Neochetina eichhorniae 1982-85

Neochetina bruchi 1982-85

Megamelus scutellaris 2013

Hopper JV, Pratt PD, McCue KF, Pitcairn MJ, Moran PJ, Madsen JD. 2017. Spatial and temporal variation of biological control agents associated with *Eichhornia crassipes* in the Sacramento-San Joaquin River Delta, California. Biological Control. 111:13-22.

What is good for Florida is not necessarily good for California.

- Search for better adapted biotypes:
- N. eichhorniae (weevil)
 - 2x more eggs at "fall" temps
- *N. albigutalis* (moth)
 - Collecting this spring
- New agents from Argentina

Reddy, A. M., **Paul D. Pratt**, *Julie V. Hopper*, et al. 2019. Variation in cool temperature performance among populations of *Neochetina eichhorniae* (Coleoptera: Curculionidae) and implications for the biological control of water hyacinth, *Eichhornia crassipes*, in a temperate climate. Biological Control. 128: 85–93.

Arundo (Arundo donax)

© 2022 Celficra

- Consumes/wastes water and blocks access.
- Obstructs flood control channels.
- Fuels wildfires.
- Displaces native plants and animals.
- Hides illegal activities that damage environment.
- At least \$100M spent on control; \$70M needed for full control

Stem-galling wasp: Tetramesa romana

- Adult females live 4-5 days and reproduce asexually
- One female produces an avg. of 26 new adults; max of 66.
- Larvae develop inside cane (endophagy) in 30-35 days.
- •Almost all (90%) of egg-laying and feeding occur at shoot tip.
- •The wasp can develop only on the genus Arundo.

Stem-galling wasp: Tetramesa romana

Original releases in the Lower Rio Grande Basin of Texas and Mexico (2009-2012)

- Reduced live biomass by 22% by 2014.
- Further 20% reduction by 2016.
- Increased mortality of side shoots.
- Two to three-fold increase in diversity of other plants occurred.
- Released in California since 2010, established and spreading.

Stem-galling wasp: Tetramesa romana

Arundo armored scale: Rhizaspidiotus donacis

- Causes distortion, death of young lateral shoots.
- In combination with arundo wasp, decreases new main and side shoot growth.
- Can decrease arundo rhizome (root) size.
- Released and now established in northern California- 7 sites

The Arundo leafminer: Lasioptera donacis

Exotic Ludwigia (water primroses) in the U.S.

- 4 Ludwigia taxa: •
 - L. hexapetala, L. grandiflora, L. peploides subsp. montevidensis, & L. peploides subsp. peploides
- Perennial forbs
- Sexual and asexual (clonal) reproduction
- Forms dense mats across water surfaces •
- Introduced via ornamental plant industry •
- Invasive in aguatic and riparian ecosystems
 - wetlands, edge of water bodies, ponds, irrigation ditches, etc.
- Found in South Atlantic, Gulf, and Pacific coastal states •
- All four are exotic taxa. •

FuED

L. p. ssp. montevidensis

L. p. ssp. peploides

L. hexapetala

Surveys in Uruguay and Argentina

Tested 4 insects

- Thrips: Liothrips ludwigi
- Beetle: Lysathia flavipes
- Weevil: Sudauleutes bosque
- Moth: Paracles azollae
- All attacked native species
- No immediate plans to test more species

Brazilian water weed: Egeria densa

- Very few herbivores in South America
- Hydrellia egeriae
 - Completes development on *Elodea*
- Not actively searching for new insects

Alligator weed (Alternanthera philoxeroides)

- Discovered in the Delta
 - 2017 first report
 - 2019 100s of patches
 - Anderson (near Sac. R.)
 - Feather River (near Afterbay)
 - Laird Park, Modesto

Textbook example of success...

- Complete control in southeastern US
- Three insects:
 - Flea beetle (*Agasicles*)
 - Thrips (Amynothrips)
 - Moth (Vogtia)
- Poorly adapted to NorCal
- Found better adapted beetle, seeking permit to release in California.

- Native to South America
- Introduced into Europe in the early 1800s
- Introduced from Europe to California in 1848
 - Dried flower arrangements
 - Horticulture trade
 - Soil stabilization
 - Animal forage

Photo: Joseph DiTomaso

• Sexual reproduction:

- Female plants: only female flowers
- Hermaphrodite plants: pollen donors (effectively male)
- Female plumes: >100,000 seeds
- Horticultural industry propagates female plants
 - From cuttings, maintains features of interest
 - Avoids viable seed in environment
- Hermaphrodites introduced

Pampasgrass: female (L) and male (R) inflorescence; photo: JM Di Tomaso

- Considered invasive in Mediterranean climates worldwide:
 - Africa, Australia, Europe, New Zealand, and North America
 - California: naturalized ~1929
 - Widespread by the 1950s
 - San Francisco Bay Area
 - Southern California

• Invades coastal systems, riparian areas, cliffsides, forestry plantings, common in disturbed areas

- Biological control:
 - New Zealand:
 - Floral smut (pathogen)
 - Planthopper (insect)
 - USA:
 - Decades of interest but...
 - Many conflicts of interest
 - Horticultural industry
 - Homeowners
 - Demonstration gardens
 - Focus on other weeds....

Pampas grass Midge: Spanolepis selloanae

Phytoparasitica (2021) 49:229–241 https://doi.org/10.1007/s12600-020-00844-1

ORIGINAL ARTICLE

A new gall midge species (Diptera, Cecidomyiidae) as a potential candidate for biological control of the invasive plant *Cortaderia selloana* (Poaceae)

Jaime Fagúndez 🕞 • Raymond J. Gagné • Marta Vila

Received: 30 November 2019 / Accepted: 27 August 2020 / Published online: 15 September 2020 © Springer Nature B.V. 2020

Abstract A gall midge (Diptera, Cecidomyiidae) is reported here for the first time from spikelets of *Cortaderia selloana*, a prominent alien invasive grass species in southern Europe. The insect is described as a

Introduction

The Enemy Release Hypothesis (ERH) states that the lack of natural enemies provides invasive alien species

Pampas grass Midge:

Spanolepis selloanae

- Discovered in Spain
 - Has spread to Portugal
- Appears to only attack seeds of pampas grass
- Midge lays eggs in flowers (ovaries)
- Larvae feed on developing seed
- One larva per seed
- Pupate in the seed shell

Figura 2. Aspecto general de un adulto hembra (a) y de una larva (b) de *Spanolepis selloanae*. En ambos casos, la barra de escala representa 1mm.

Pampas grass Midge:

Spanolepis selloanae

- Midge doesn't
 - attack leaves
 - change architecture
 - affect plume appearance
- Midge does
 - Reduce seed production by ~80%
 - Spread quickly

Spanish plants with many damaged seeds

Pampas grass Midge:

Spanolepis selloanae

- Is this the perfect biological control agent?
 - Sterilizes plants
 - Without affecting aesthetics
 - Attack C. jubata?
 - Host specific?
 - Must test natives and other horticultural plants
- Is it already here????

Spanish plants with many damaged seeds

So many weeds, so little time

- Invasive plants are not on the decline!
 - Spongeplant (*Limnobium*), curlyleaf pond weed, etc.
- Biological control needs greater support
 - Too often the option of last resort
- Critical to use all the tools in the toolbox

Paul.Pratt@usda.gov