Rapid evolution of native and invasive California grassland species to altered water availability

Katherine Brafford and Jennifer Funk UC Davis kebrafford@ucdavis.edu

Acknowledgements UCDAVIS DEPARTMENT OF PLANT SCIENCES

•Funk Lab Members

- McLaughlin Natural Reserve
- •Dr. Susan Harrison
- •UC Davis Greenhouse staff
- •Student Disability Center staff
- •Qualifying Exam Committee
- •Numerous undergraduate and high school interns and volunteers

•UC Davis DataLab

•GGE Stats Support Group

Funding

•National Science Foundation Graduate Research Fellowship

•I acknowledge the Department of Plant Sciences, UC Davis for the award of a GSR scholarship funded by endowments, particularly the James Monroe McDonald Endowment, administered by UCANR

- •UC Davis Graduate Group in Ecology Fellowship
- •UC Davis Eugene Cota-Robles Fellowship
- •Northern California Botanists Student Research Scholarship
- •Davis Botanical Society Student Research Grant
- California Native Grasslands Association; Grassland Research Award for Student Scholarship

Western USA: Climate Forecast

- Much of CA drier
- Drier dry periods even in areas where annual rainfall remains the same

Background

Gershunov et al., 2019; Zhang et al, 2021; Swain et al, 2017; Zhuang, 2021; Eviner, 2016

How plants deal with water limited environments

Functional trait: Any measurable characteristic which impacts fitness₁ (i.e. height, seed weight, flowering time)

Traits that may lead to higher fitness in drought conditions:

- **Early flowering** = complete lifecycle before drought
- Larger seeds = provides resources for young seedlings to grow even when conditions are hard
- More smaller seeds = higher chance some offspring will germinate at the right time and in the right place

Background

4

Background

Rapid evolution/inherited traits

- Sometimes, traits in populations of short-lived plants can quickly change in response to new environmental conditions
 - Rapid evolution
 - Maternal effects
- This includes in response to changes in water availability Such as: Nguyen, 2016; Franks et al., 2014; Metz et al., 2020; Kooyers et al., 2021; Franks et al., 2007
- Most often see changes in phenology (i.e. flowering time)
- Many speculate that invasive plant populations might be able to adapt more quickly than natives

Aims

Background

Test 13 short-lived species for adaptive changes after six years of exposure to altered water conditions

- Natives and invasives
- Early, mid, and late season bloomers
- Growth form (grasses and forbs)
- Mating system
- Lifespan (annuals and short-lived perennials

Background

Relevance

- Inform on when to plant local seed vs. seed adapted to the future climate
- Inform on when to plant non-local seed (lower cost/higher availability) vs. local seed (higher cost/lower availability)
- Identify non-natives to prioritize for control

General Plot Layout

Control

Seed mass McLaughlin 2021

Serpentine shelter/control (treatment p<0.001***; species*treatment p= 0.036*)

brho	elel	fepe	heco	mh	trla
1.01	1.22	*1.17	*1.21	1.06	1.02

Non-serpentine watered/control (no significant differences between treatments)

avfa	brho	mh	ViVi
0.97	0.97	0.98	0.94

Serpentine watered/control (near-significant species*treatment interaction p= 0.058)

avfa	brho	capa	clgr	elel	femi	fepe	heco	mh	pler	trfu	trla
0.94	1.03	0.89	*1.21	0.92	1.00	*0.86	0.99	0.98	0.91	0.99	0.92

Wetter = heavier

Results

Seed mass McLaughlin 2022

Serpentine shelter/control (no significant differences between treatments)

brho	clgr	elel	femi	fepe	heco	mh	pler
1.10	0.71	1.07	0.97	0.9	1.11	1.03	1.19

Non-serpentine watered/control (no significant differences between treatments)

avfa	brho	mh
0.90	0.87	1.01

Key: Drier = heavier

Wetter = heavier

Results

Same weight

Serpentine watered/control (no significant differences between treatments)

avfa	brho	capa	clgr	elel	femi	fepe	heco	mh	pler	trla
1.06	1.01	0.75	1.18	0.91	1.09	0.87	1.13	1.00	1.01	1.09

Seed mass greenhouse 2022

Non-serpentine watered/control (treatment p= 0.008**;

treatment*species p= 0.022*)	
------------------------------	--

avfa	brho	mh	vivi
*1.11	0.87	1.00	0.98

Results

Same weight

Serpentine watered/control (treatment p= 0.053; treatment*species p=0.005**)

avfa	brho	capa	clgr	elel	femi	fepe	heco	mh	pler	trfu
1.04	0.96	*1.34	1.28	1.03	0.97	1.04	0.95	1.07	0.98	0.98

Date of first flower 2022

Non-serpentine watered/control (no significant

differences between treatments)

avfa	brho	mh	vivi
0.99	1.01	0.96	1.03

Serpentine watered/control (no significant differences between treatments)

avfa	brho	capa	clgr	elel	femi	fepe	heco	mh	pler	trfu
1.05	0.97	1.00	1.00	1.02	1.05	0.99	1.00	0.99	1.02	1.05

Conclusions

Still need to analyze more traits from F1 and F2 generations

Tentative conclusions

- Plants that received less water have the same seed mass or have heavier seeds
- Historic water conditions had either no effect or an unclear effect on seed mass
- Historic water conditions had no effect on first flowering date

What does this mean?

At this point, no obvious signs of adaptation

If this is true, then:

- Population success will be highest if best-adapted species is planted
- Facilitate the movement of ecotypes of desirable plants rather than counting on them to adapt
- Stop the movement of invasive weed seeds, especially from regions that might have ecotypes that are a good fit for your site

Thank you for listening!

Questions? kebrafford@ucdavis.edu

And in state