Planting and sparing the right flowers for native bees

Native bee use of native and exotic plants in restoration plantings

By Corey Shake, Partner Biologist, Point Blue & USDA-NRCS Cal-IPC Symposium, October 26, 2023

Building on native vs. exotic plant use studies

Williams et al. (2010) in Basic and Applied Ecology:

No native bee preference—used in proportion to availability

"...conservation programs that rapidly remove alien plants without restoring native plant populations could have deleterious impacts on native bees..."

Morandin and Kremen (2012) in Restoration Ecology:

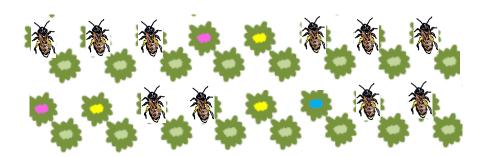
Native bees preferred native plants, but

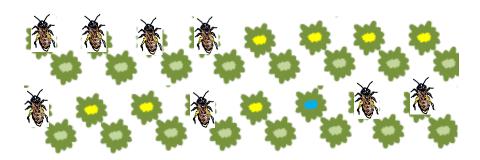
"...in regions where exotic plants dominate, they can be an important resource for native...bees"

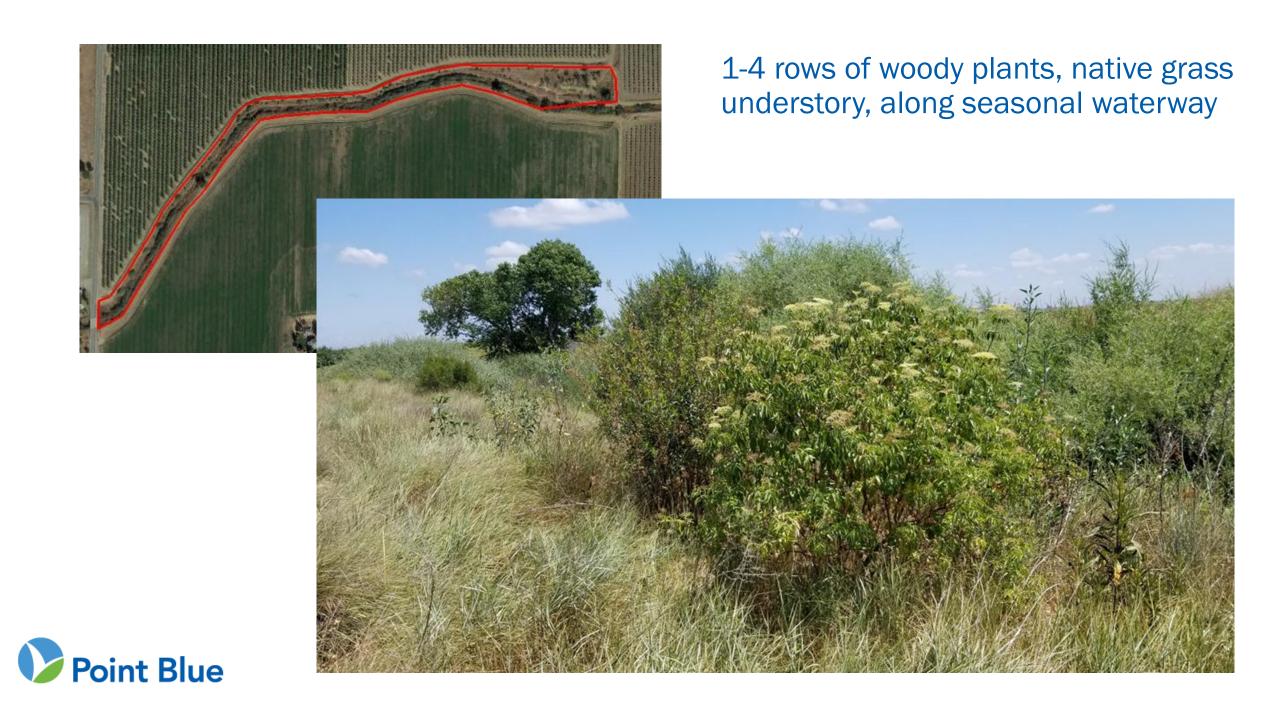
Study objectives

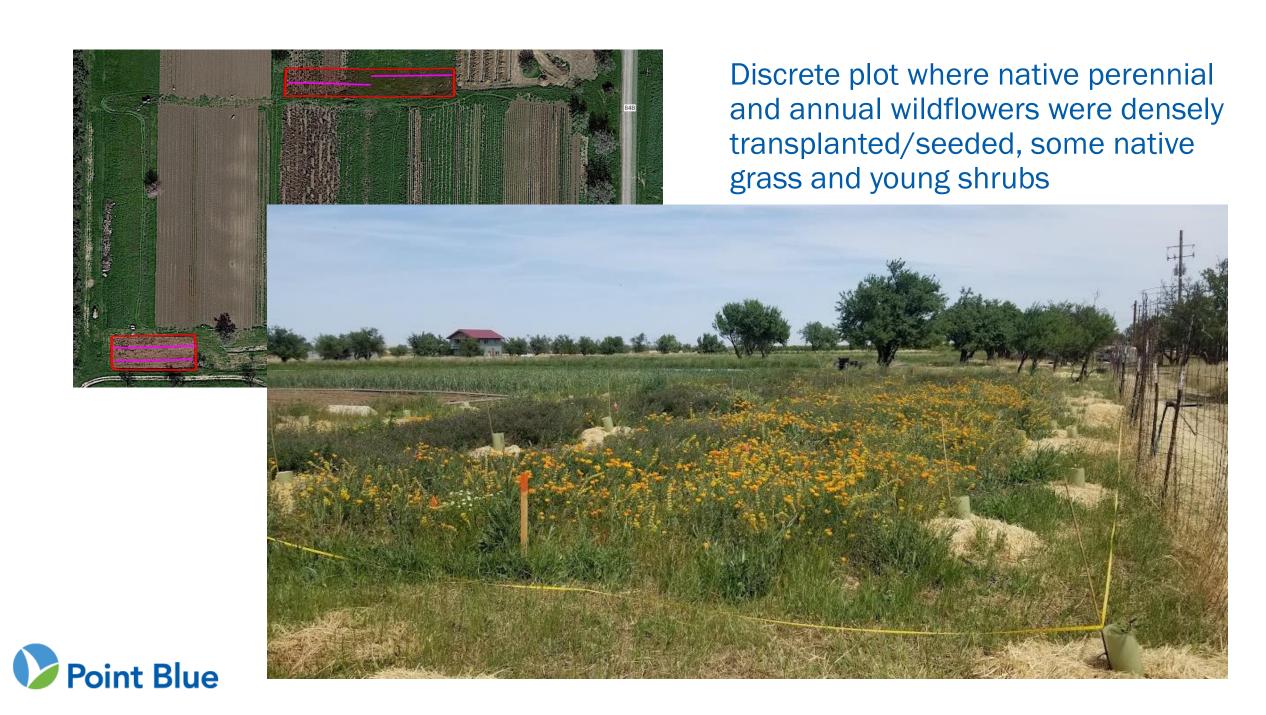
Primary: Monitor restoration project performance and improve design for

Yolo Creek and Community Partnership






<u>Sub-objective</u>: Evaluate native bee preference for common native and exotic plants



Field Methods and Effort

Bees - Streamlined Bee Monitoring Protocol *

- Paired 30 x 1-m plots
- 7.5 min. count of native bees visiting flowers
- Record which flower species visited by bees

Effort

- 3-6 pairs/site, 3 seasons/year
- 2019-21: 400 plots
- 2022-23: 342 plots

Field Methods and Effort

Plants

For each blooming plant species at each count plot, we visually estimated:

	2019-21	2022-23	
	Floral unit abundance bins:	Floral unit abundance bins	
	1 – 1-10	N = No. of floral units	
,	2 – 10-100	D = Avg. diam. of floral units	
	3 – 100-1000	Florel Area - N. v. [v. /D./2)21	
	4 – 1000+	Floral Area = N x $[\pi \times (D/2)^2]$	

1937 blooming plant records

Native bee plant preference analysis

Compare use vs. availability by rankings

From the set of all plots where a given plant was blooming, we calculated:

USE	Native Bee Occupancy (OCC) = Proportion w/ a visit by a native bee
AVAILABILITY	Mean Floral Abundance (FAB) = Average of bin numbers (ALL YEARS)
AVAILADILIT	Mean Floral Area (FAR) = Average of floral areas (2022-23 only)

Species	Rank OCC	Rank FAB	OCC - FAB
Yellow	1	1	0
Blue	2	2	0
Pink	3	3	0

Rank OCC	Rank FAB	OCC - FAB
3	1	2
2	2	0
1	3	-2

Common Name	_	No. plots blooming	осс	FAB	FAR 2022-23		Rank Diff. (OCC-FAR)	Avg. of Rank Diffs
valley gumplant	N	150	0.61	1.7	0.017	-9	-5	-7
summer mustard	Е	132	0.42	2.3	0.007	-3	-5	-4
narrow-leaved milkweed	Ν	65	0.20	2.0	0.003	-1	-5	-3
field bindweed	Е	116	0.20	1.3	0.007	-5	-1	-3
Cleveland sage	N	41	0.39	2.0	0.001	-3	-2	-2.5
California poppy	Ν	71	0.35	1.7	0.171	-6	2	-2
California rose	Ν	63	0.08	1.3	N/A	-1	N/A	-1
Italian thistle	Е	40	0.15	1.6	0.002	-1	1	0
California buckwheat	N	81	0.53	3.3	0.084	1	0	0.5
yellow starthistle	Ε	125	0.17	2.0	0.008	1	1	1
yarrow	Ν	41	0.17	2.3	0.035	4	3	3.5
mustard (<i>B. nigra</i> & no ID)	Е	64	0.25	2.4	0.021	4	4	4
hairy vetch	Е	55	0.09	2.3	0.027	8	7	7.5
blue elderberry	N	40	0.08	2.4	N/A	11	N/A	11

Other Notable Species

2019-21 Analysis

2022-23 Analysis

Common Name	-	No. plots blooming	Rank Diff (OCC-FAB)
tree tobacco	Е	30	3
perennial pepperweed	Е	21	7
quailbush	N	22	12

Common Name	-	No. plots blooming	Avg. of Rank Diffs
Fluellin (<i>Kickxia</i>)	Е	24	-10
turkey-mullein	N	17	-4.5
arroyo lupine	N	24	3.5
chick lupine	N	41	9.5
blueblossom	N	71	12

Low sample size (10-20 plots), higher occupancy (>0.2): California aster, California goldenrod, horehound, heliotrope (native *H. curassavicum* and exotic *H. europaeum*), rock phacelia (*P. californica*), western vervain

Best Practices

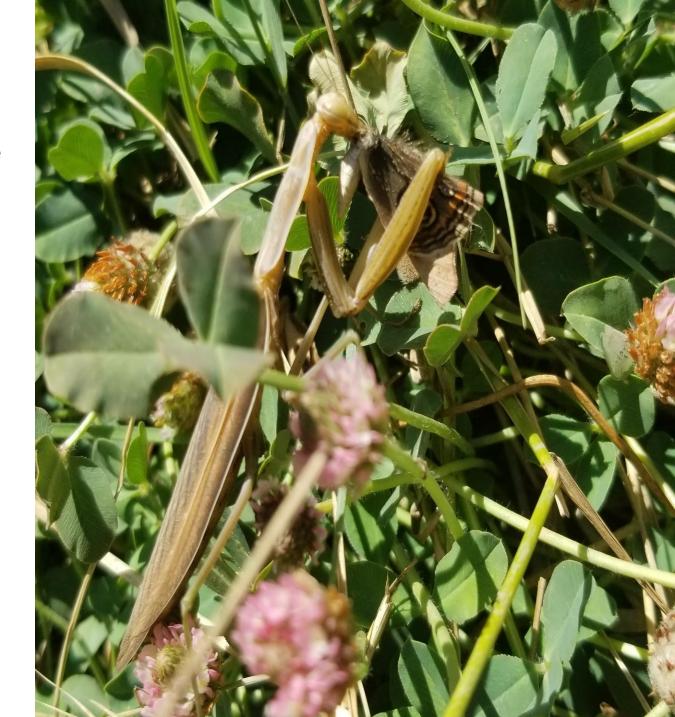
Incorporate high-value native wildflowers more often, for more area

- Plant perennial wildflowers along woody plant irrigation lines
- Seed or transplant in intensively managed plots
- Seed robust competitors like gumplant, poppy, lupine

Best Practices

Leave as much exotic floral resources as is tolerable to achieve your goals, especially if you haven't replaced the exotic forage with natives!

- Know species, then compare risk vs. pollinator value
- Many late season weeds are valuable and threaten less
- Limit spraying and mowing to only areas most critical to success
- Get to know your butterfly host plants, native and exotic



Literature Cited

Morandin, L.A., and C. Kremen. Bee preference for native versus exotic plants in restored agricultural hedgerows. Restoration Ecology 21: 1-6.

Ward, K., D. Cariveau, E. May, M. Roswell, M. Vaughan, N. Williams, R. Winfree, R. Isaacs, and K. Gill. 2014. Streamlined bee monitoring protocol for assessing pollinator habitat. 16 pp. Portland, OR: The Xerces Society for Invertebrate Conservation.

Williams, N.M. D. Cariveau, R. Winfree, C. Kremen. 2010. Bees in disturbed habitats use, but do not prefer, alien plants. Basic and Applied Ecology 12: 332-341.

Appreciations

Yocha Dehe Community Fund USDA-NRCS

Regenerative Agriculture Foundation

Point Blue field technicians: Sophie Noda, David Garcia, Grant Halstrom, Kyle Marsh, and Qaim Naqvi

Sophie Noda, Kyle Marsh, and Libby Porzig for data analysis assistance

Butterfly Species and Host Plants

	Scientific Name	Common Name	Total	Larval host plants
			Count	
1	Pieris rapae	cabbage white	228	mustards
2	Colias eurytheme	orange sulphur	92	alfalfa, Fabaceae
3	Junonia coenia	buckeye	74	fluellin, plantain
4	Everes comyntas	eastern tailed blue	43	vetch, lotus, clover
5	Plebejus acmon	Acmon blue	34	lotus, knotweed, buckwheat
6	Pyrgus communis	common checkered skipper	32	cheeseweed, alkali mallow
7	Brephidium exile	western pygmy blue	22	Russian thistle, quailbush
8	Vanessa sp.	painted lady	14	many
9	Papilio rutulus	western tiger swallowtail	10	sycamore, ash, other trees
10	Strymon melinus	common hairstreak	6	cheeseweed, lotus, many
	Lycaenidae sp.	unidentified blue	35	

