The Effects of *Vicia villosa* Invasion on Plant-Pollinator Interactions

Rebecca Nelson
Harrison Lab
University of California, Davis
ranelson@ucdavis.edu
Advisors: Susan Harrison & Fernanda Valdivinos
Acknowledgements

For thousands of years, the land where this study took place has been the home of Patwin and Miwok peoples. Full land acknowledgment at: https://politicalecologylab.ucdavis.edu/uc-davis-pe-lab-land-acknowledgement

Thank you to Prof. Susan Harrison, Prof. Fernanda Valdivinos, Marina LaForgia, Cathy Koehler, Paul Aigner, Ben Amann and the McLaughlin Reserve for their support. Thank to Bita Rostami, Alexis Grana, Isabel Mendoza, Nat Walts, Rebekah Shane, and Kyle Bianchi for assistance in the field.

Photos taken by Becca Nelson unless otherwise noted.
Cross-boundary effects

serpentine grassland

non-serpentine grassland

Scherer-Lorenzen, et al. 2022
TREE, Artz and Waddington 2006
Journal of Ecology
2. How does proximity to invasive vetch at a community boundary affect plant-pollinator interactions within native-dominated serpentine grasslands?
Methods

- Observational study of Bull Clover (*Trifolium fucatum*) floral visitation at 0, 1, 5, 10, and 50 m from Hairy Vetch (*Vicia villosa*) at 6 meadows spanning an invasion gradient
- Recorded community-level plant-pollinator interactions and floral abundances for the same 6 meadows to generate networks
- Mixed effects models and network z-scores
Within-meadow Effects
Vetch Invasion Gradient
Summary

• Between meadow distance effects were stronger than within meadow effects.
• Pollinator richness and abundance peaked at medium invasion intensities.
• At high invasion levels, Hairy Vetch replaced Bull Clover as a key hub in the network.
Questions?

ranelson@ucdavis.edu
Thank you for listening!