

Seasonal herbicide management for invasive plant control: insights from stinknet

Clarissa Rodriguez¹, Christopher J. McDonald², Loralee Larios¹ ¹University of California, Riverside, Riverside, CA, USA; ² University of California Cooperative Extension

<u>A) Reduce initial establishment of the invader</u>

*Sprayed in the **Fall**, aimed at stopping the seedlings from germinating successfully

B) Reduce seed production of the invader

*Sprayed in the **Spring**, aimed at killing actively growing plants prior to flowering

When is the best time to apply herbicides?

*Dormant propagules = potential for regeneration

Quantifying Impacts of Management

Measuring treatment effectiveness through observing **Above ground plant composition**

*Dormant propagules = potential for regeneration

Quantifying Impacts of Management

Measuring treatment effectiveness through observing **Above ground plant composition**

Research Question

How does seasonal herbicide management influence...

(1) stinknet cover?

(2) stinknet density in the soil seed bank?

Design

Conducted herbicide trials across three sites within Riverside county

- Lake Mathews Preserve
- Lake Perris State Recreation Area
- Motte Rimrock Reserve

Replicated trials in 2018 & 2019

Number of repeated applications: One vs. Two

Timing of Herbicide application: Fall: November Spring: <5% flowering (April/May)

Vegetation Sampling:

one year after treatment (1 YAT) within a 1 x 1 m quadrat, recorded:

- stinknet cover
- overall species composition & richness

Seed Bank Sampling:

Collected July, 2021

- 3 soil cores per plot
- 7-month Seedling emergence study

Stinknet Aboveground Cover 1 YAT

Year Treated: Not Significant # of applications: Not Significant Seasonal Management: <u>Significant</u>

Spring-applied did NOT differ compared to the control strategy

Stinknet Aboveground Cover 1 YAT

Year Treated: Not Significant # of applications: Not Significant Seasonal Management: <u>Significant</u>

Α В 40 20 Stinknet % cover а T 15 b Stinknet % cover Control indaziflam aminopyralid isoxaben + dithiopyr Herbicide Treatment a a a b Control Spring Fall glyphosate Season Managed Herbicide Treatment

Fall-applied reduced stinknet by 84% compared to the control strategy

Stinknet Soil Seed Bank Density

Year Treated X # of applications: <u>Significant</u> Seasonal Management: <u>Significant</u>

Spring-applied did NOT differ from control strategy

Stinknet Soil Seed Bank Density

Year Treated X # of applications: <u>Significant</u> Seasonal Management: <u>Significant</u>

Fall-applied reduced stinknet seed density by 58% compared to the control

Seed Bank Dominated by Non-native species

Implications for Practice

Spring and Fall herbicide applications reduce invader cover

..but **Fall** applied *reduced seed density* & *overall invader abundance* BOTH above & belowground dynamics offer valuable information on how to move forward strategically

Implications for Practice

Persistent seed bank + High seed input = **multiple years of herbicide application** needed to deplete non-native seed bank

Native species may need **additional regeneration strategies** to overcome dispersal limitations and invasive-dominated seed banks in post-treated areas

Consider the residence time of herbicides before adding seeds

 Activated charcoal mixed into seed mix can limit residual herbicide impacts

Thank You

Type your questions in the chat, contact me on whova or email me crodr087@ucr.edu

<u>Larios Lab</u>

Acknowledgements

Help in the Field Nathan Leach Soren Weber Miguel Solis Renee Stewart Joylyn Tran

<u>Land Practitioners</u> Kenneth Halama Ken Keitzer Brian Shomo

<u>Collaborators</u> Travis Bean Chris McDonald

<u>Funding:</u> RCHCA Eugene-Cota Robles Fellowship Natural Reserve System