Using Organic Herbicides on Roadsides and ROW: Evaluating Effectiveness and Costs

Chris McDonald PhD

Note: Unpublished data in results: Do Not Cite

Natural Resources Advisor

University of California Cooperative Extension

cjmcdonald@ucanr.edu

Southern California

(Riverside, San Diego, Imperial and San Bernardino Counties)

Why Manage Roadsides?

- Maintain road and shoulder structure
- Reduce maintenance and operations costs
- Maintain visibility
- Reduce fire hazards
- Reduce driving dangers and debris
- Aesthetically pleasing
- Low water usage
- Be good managers
- And others...

IPM and the Public

- As part of our Integrated Pest Management program for roadsides managers are striving to reach targets and improve methods of weed control
- The public is also concerned about roadside managers using herbicides, especially glyphosate
- The public is also interested in the use of organic herbicides as a potential substitute for glyphosate-based herbicides

Experimental Purpose

 We designed an experiment to test the use of glyphosate, nonglyphosate synthetic herbicides, and organic herbicides to control roadside vegetation in San Diego County

Research Objectives

- 1- Evaluate the <u>efficacy</u> of non-glyphosate and organic herbicides
- 2- Determine the <u>number of applications</u> to achieve targeted level of weed control
- 3- Determine <u>costs</u> to achieve desired levels of weed control

Example target conditions Minimal residual vegetation

Practical Considerations

- Tests were conducted on roadsides (not test sites) with standard roadside equipment (injection sprayer w/ boomless 'nutating' nozzles) to ensure roadside effects would be incorporated in the experiment
- Herbicides had to control a broad spectrum of weeds on site (annuals, perennials, grasses, broadleaves)

Practical Considerations

- Use rates had to be less than 10%, standard truck configuration ~8% max
- Applications had to conform to typical work schedule
 - Repeat applications at 1-month intervals
- High deference for applicator and public safety = low signal words, Caution label or lower (no Warning or Danger labels)

Quick Tangent on Organics and Safety

- The term organic (per gov't regulations) relates to the origin of the chemical and how it is manufactured
- In general, USDA "organic" products comes from natural sources and/or have not been synthesized
- Organic herbicides can have Caution, Warning or Danger signal words on label
- Signal word determines acute toxicity, it is not related to organic certification
- For example, organic Danger products can cause more acute harm than synthetic Caution products

Site Locations

- Plots located in 3 sites in San Diego County:
- Valley Center
- Ramona
- Otay Mesa

Ramona

Otay Mesa

Valley Center

Methods

- 7 treatments (3 organic, 3 synthetic, 1 untreated control) with 3 replications at each site = 21 plots, randomly in a linear pattern at 50 GPA
- Treatments were 100 ft. long and only middle 80 ft. were measured (20 ft. buffer between treatments) and 4-8 ft. wide depending on shoulder
- Organic and synthetic products sprayed on different ends of site to reduce any cross contamination, and prevent mis-applications

Control	Organics						Control	Synthetics								Control				
	Block 1 Block 2			Block 3				Block 1			Block 2			Block 3]			
1	1	2	3	1	2	3	1	2	3	2	1	2	3	1	2	3	1	2	3	3
	• 0.4 miles end to end									100) ft plc	ot								

Chemicals and Rates

- Synthetic Herbicides:
- Glyphosate @ 72 ozs./ac. (2.25 qts./ac)
- Cheetah Pro (glufosinate) @ 48 ozs./ac. and 34 ozs./ac. (max annual rate)
 - NOTE: Glufosinate current (2022) label rate: 82 ozs./ac./app. and 246 ozs./ac. annual max, which is 3X higher annual rate then used in this study
- Milestone (aminopyralid) @ 5 ozs./ac and Oust (sulfometuron-methyl) @ 3 ozs. /ac.

Chemicals and Rates

- Organics: Rejected more than 20 organic products that did not meet project requirements
- We used:
- Weed Zap = Clove oil (45%) + cinnamon oil (45%) @ 5% (maximum single application rate)
- Fireworxx = Caprylic acid (44%) + capric acid (36%) @ 6-8% (9% maximum single application rate)
 - Caprylic + Capric acids can come in Caution (Fireworxx) or Warning (Suppress) labelled products. We used Caution label product (different % a.i.'s)

A Note on Organics: Stop Use Notices

- Two other organics were selected, but were stopped
- Two organic products were selected, however CDFA issued a stop use order alleging the products were adulterated with glyphosate and other synthetic active ingredients

STOP USE NOTICE: ORGANIC INPUT MATERIAL AGRO GOLD WS

STOP USE NOTICE: ORGANIC PESTICIDE PRODUCTS Whack Out Weeds! AND EcoMight-Pro

July 30, 2021

December 4, 2020

Data Collection

- Data were collected:
- 7 d Before T (pretreatment) and then 7, 14 and 30 DAT (days after treatment) after each follow up treatment
- Repeated treatments monthly as needed (surveyed 7, 14, 30, 37, 44, 60, 67, 74, 90 DAT, etc.)
- And then monthly surveys (120, 150 DAT)
- Collected data on weed control (10=100% control, 0= no control), and end of season biomass

Results: Study Sites

- Sites were dominated by non-native winter annual weeds
- Mostly annual grasses (oats, bromes, barleys, perennial ryegrass, fescues)
- Some broadleaves (thistles, tocolote, tumbleweed, mustards, storkbill)
- Few native perennials, few native wildflowers
- All sites received ~40-50% below average rainfall in 2020-2021, i.e. drought, => short growing season, few summer annuals

 What was the effectiveness of the non-glyphosate synthetic herbicides and organic herbicides compared to glyphosate and untreated controls?

Control	Organics									Control	Synthetics									Control
	Block 1 Block 2 Block 3					Block 1			Block 2			Block 3								
1	1	2	3	1	2	3	1	2	3	2	1	2	3	1	2	3	1	2	3	3

Unpublished data in results: Do Not Cite

- 30 DAT
- Glyphosate had significantly highest control (~70%)
- Other synthetics sig. higher than untreated
- Organics had lowest control, not sig. diff. from untreated
 - *- indicates significantly different from untreated plots at same DAT

- 60 DAT
- 2nd treatment for all herbicides except glyphosate
- Max annual rate for Cheetah Pro and Milestone+Oust

*- indicates significantly different from untreated plots at same DAT

By 60 DAT No significant differences between any treatment and control plots

- At 60 DAT applied 3rd herbicide treatment
- 2nd glyphosate app.
- 3rd organic app.

From 60 to 150 DAT no sig. diff. between any treatment and control 80% of untreated

control plants

died (annuals)

- Glyphosate with 2 applications had the fastest and most effective weed control (~80-90%)
- By 44 DAT only glyphosate was significantly higher than control plots
- From 60 DAT to 150 DAT all treatments were not significantly different from control plots, and few summer annuals germinated

• The lack of rainfall killed the annuals quickly

37 DAT, 1 glyphosate app., 2 apps. for other herbicides

Time series of Fireworxx from -7 to 120 DAT

NAME AND DESCRIPTION.

7 DAI

30 DAT

DAT

44 DA

Time series of Glyphosate from -7 to 120 DAT

4 DAT

1st H App

DAT

Pretreatment

 and H App

 60 DAT

 67 DAT

30 DAT

37 DAT

Results: Objective #2 – Number of Applications

- 3 applications of WeedZap never had weed control significantly higher than untreated plots
- 3 applications of Fireworxx resulted in control significantly higher than untreated plots only one time (37 DAT) (46 vs. 20%, respectively), but significantly less than glyphosate (90 vs. 46%)
- 2 applications of glyphosate averaged 80-90% control
- 2 applications of Milestone+Oust had significantly higher control than untreated plots, but less than glyphosate
- Cheetah Pro was less effective than Milestone+Oust , but not significantly different from organics

- Cost of herbicides per treatment?
- Labor, equipment, surfactants, maintenance not included

Herbicide (H)	Н Туре	Rate (ozs.) at 50 GPA	Cost per Ac.	Ratio of Cost H:Lowest Cost H	Ratio of costs to replicate study results	Gallons of herbicide needed to treat 100 ac.
		70	60.20	1 0	1.0	
Glyphosate	Synthetic	12	\$9.36	1.0	1.0	56.3
Aminopyralid	Synthetic	5	\$12.63	1.8	1.8	3.9
Sulfometuron	Synthetic	3	\$4.69			2.3
Glufosinate	Synthetic	41	\$19.85	2.1	2.1	32.0
Clove+Cinnamon Oils	Organic	320	\$207.14	22.1	33.2	250.0
Caprylic+Capric acids (8%)	Organic	512	\$402.28	43.0	64.5	400.0
Capry.+Capric(9% max rate)	Organic	576	\$452.56	48.4	72.5	450.0
Purchase prices	s for each h	erbicide ob	otained by S	SD AWM in	Dec 2020-Ja	an 2021

- Summary of costs:
- Organic use rates are much higher than synthetics (4-100X more product)
- This leads to much higher product costs per acre
- Because organics needed more applications costs were 50% higher again than glyphosate (65-73X), or Milestone+Oust (36-40X)
- UPDATE <u>outside of scope of this study</u>: Prices of glyphosate and other herbicides have changed drastically since pandemic lows, cost ratios are not current

- Summary of costs:
- When treating large acreages, storage of hundreds to thousands of gallons of organic herbicide will be needed
 - 400-450 gallons per 100 ac. treated each application
 - 4,000-4,500 gallons per 1,000 ac. treated each application

What Did Others Find Using Organics on Roads?

- S.L. Young, Weed Tech. 2004
- Northern California
- 5 applications of acetic acid, pine oil and plant essential oils and 2 apps. of glyphosate
- No organic achieved same control (88%) as glyphosate (100%)
- Organic costs were 28-42X higher than synthetics

Herbicide	Yellow Star Thistle	Buckhorn plantain	Hairy vetch	Slender Oat		
	109 DAT	109 DAT	109 DAT	109 DAT		
Glyphosate	100 a	100 a	100 a	100 a		
Acetic Acid	36 b	49 d	60 b	83 a		
Pine Oil	81 a	65 c	100 a	41 b		
Plant Essentials	85 a	84 b	100 a	86 a		
Control	0 c	0 c	0 c	0 c		

Summary

- The two organic herbicides, applied 3 times, were less effective than synthetic herbicides at controlling roadside weeds, and only marginally better than untreated plots
- At least three organic herbicide applications were needed throughout the growing season during this drought, synthetics needed 2 apps.
 - In years or areas with more rainfall and a longer growing season, at least 4+ organic applications could be needed to control winter and summer annuals
- The best performing organic herbicide was less effective and much more costly than glyphosate at end of season
 - When treating large areas, will need to store hundreds to thousands of gallons of organic herbicides for each application

Questions?

cjmcdonald@ucanr.edu

THANK YOU to Project Partner San Diego County Dept. Agriculture, Weights and Measures

Funded by San Diego County

