

Restoring Gaviota Tarplant in a Sea of Iceplant: Challenges and Opportunities

Laura Riege, MS, Heather Schneider, PhD, Jutta Burger, PhD

October 28, 2021

Jack & Laura Dangermond Preserve

Dangermond Preserve By the Numbers

Nearly 25,000 acres
Land-sea protection w Point Conception
State Marine Reserve (22 mi2)
8 miles of coastline
78 miles of streams
20 mi2 Jalama watershed
300 ac wetlands
50 natural communities (50% sensitive category)
700 species
60 species of concern
14 threatened & endangered species

Gaviota Tarplant (Deinandra increscens ssp. villosa)

Federally endangered Endemic to the central coast region

7 Populations

- Gaviota
- Hollister Ranch
- Santa Ynez Mountains
- Point Conception
- Tranquillon Mtn./Sudden Peak
- Point Arguello
- Lion's Head

Existing Conditions For Gaviota Tarplant

What are baseline conditions? How are invasive species and local site conditions affecting Gaviota tarplant populations?

Measured from 3x3m² plots over two years at the Dangermond Preserve, Vandenberg SFB, and Gaviota SP (1 yr)

- Density: 1-51 plants/m²
- Highly variable reproductive output (est. 1-293 flower heads/m²)
- Low native cover (2-34%)
- Moderate/high non-native cover (25-68%)
- Dominated by Carpobrotus, Brome grasses
- Gopher/ground squirrel disturbance common, creating openings for to tarplant establish

Existing Conditions (cont.)

Non-native Cover (JLDP)	%Cover
Iceplant (Carpobrotus)	24
Brome grasses	10
Fillaree	7
Rattail fescue	5
+ Perennial veldt grass at lo	w cover

== >invasion risk!

Remnant Native Cover (JLDP)	%Cover
California sage	3
Coast goldenbush	2
Purple needlegrass	1
Gaviota tarplant	1

+ several uncommon natives (e.g., Blochman's Dudleya, Fritillaria, beard grass, giant Coreopsis) in plots nearby ==> restoration potential!

Gaviota Tarplant Density (all sites)

The Cojo Terrace

1 0 | October 28, 2021

Imagery Date: 11/10/2016

1 | October 28, 2021

October 28, 2021

How do we do this at scale?

400 Volunteer Hours = 1 acre removed

- Where should the project start?
- What is a reasonable and practical restoration unit size?
- Treat dune soils, coastal prairie and wetlands differently?
- What site-specific methods should be employed?
- Are there herbicides we should include/exclude?
- How do we maximize crew efficiency during windy hours?
- Restoration + cultural resources protection?

Restoration Plan - Opportunities

Science Working Group:

- Identify a range of approaches
- Chunk it down to manageable pieces
- Outline experimental tests and phasing scheme
- Apply what we learn to next treatment area(s)
- Be adaptive
- Set reasonable expectations
- Share lessons learned

Protect Cultural Resources
 Minimize wind erosion
 Protect Gaviota tarplant

Proposed Approach

- Herbicide treatment
 - Glyphosate
- Hand pulling around natives and wetlands
- Grass-specific herbicides for veldtgrass and ripgut brome
 - clethodim, fusilade
- Solarize selected wetlands and ghost wetlands
- Livestock grazing for weed control and to improve seed/soil contact
- Drill seeding through ice plant thatch

Approach

Next step: pilot studies!

Conservation Seed Collections

2020

- Collected from 246 individuals across 4 sites on the preserve
 2021
- Collected from 206 individuals across 4 sites on the preserve

Seeds were collected and stored for long-term conservation in the Santa Barbara Botanic Garden Conservation Seed Bank

Why make conservation seed collections?

- Long-term conservation an insurance policy against extinction
- To facilitate research
- For future restoration or reintroductions

Seed Germination Study

- Disk vs Ray flowers: Different seed germination strategies
- Seeds from disk flowers: ready to go!
 - 100% germination without pre-treatment
- Seeds from ray flowers: built to last
 - Seeds coat was nicked prior to germination
 - 14.5% mean germination rate

Why study germination?

- Monitor viability of seed bank collections
 - Detect when collections need to be replenished via field collections or nursery increase
- Develop propagation protocols
 - Learn how to grow plants prior to restoration
- Understand seedbank dynamics and germination cues
 - Ray flowers are dormant and provide seedbank longevity
 - Inform predictions for long-term persistence under climate/environmental change

Conclusions & Next Steps

Ice Plant Science Working Group:

Pilot studies

Tarplant Studies:

- Iceplant and annual grass removal trials; track tarplant plant size and density (+ideally seed bank) response
- Determine if infrequent annual grass treatment can increase tarplant seed bank
- Evaluate how site and species vulnerability might change with future climate change scenarios

Seed germination:

- Viability test seeds collected at the preserve
- Test additional treatments to increase germination rates of ray seeds
- Develop seed increase protocols for restoration

Special Thanks to our Science Working Group and Partners!

California Coastal Commission

🖛 Santa Barbara Botanic

GARDE

Ice Plant Science Working Group design group

The Nature Conservancy

- Morgan Ball
- Katie Brown
- Carla D'Antonio
- Steve Junak
- Denise Knapp
- John Knapp
- Katrina Olthof
- Lisa Stratton

Thank You

24 October 28, 2021