Evaluating control of late-season noxious grassland invasives with multiple approaches: wildfire, prescribed fire, native grass restoration, and organic herbicides

Valerie Eviner, University of California, Davis

veviner@ucdavis.edu

Project team: Mary Cadenasso Sarah Gaffney Carolyn Malmstrom David Mitchell Maggie Shepherd & large team of helpers in the field and lab

<u>Funders:</u> DPR UC Davis USDA- AFRI

University of California Agriculture and Natural Resources

Research and Extension Center System

Hopland REC Sierra Foothills REC In California grasslands, lateseason invaders are some of our most noxious weeds

Phenological differences provide potential for control of late-season invasives

Phenological differences provide potential for control of noxious weeds by:

- Herbicides
- Burning
- Suppression by native perennial grasses
- Grazing

Organic herbicides rely on contact-kill, most effective on small seedlings

Organic herbicides rely on contact-kill, potential for targeting developing flowers

Early spring- early-season grasses large and less vulnerable vs. late-season are small and vulnerable

Late spring- early-season grasses senesced, can damage developing flowers & seeds of late-season grasses

Germinating **Dry summer** rains vvv V Ir Growing season- early season annual exorics www.wwwwwwwwwww Growing season-late-season noxious annual exotics

Any timing of glyphosate decreases cover of Medusahead and Goatgrass

Early spring application of Capric acid has a moderate effect on noxious grasses

No significant persistent effects of organic herbicides one year after treatment

Early and mid- spring applications of glyphosate virtually eliminate wildflowers (organics have more muted effects)

Phenological differences provide potential for control of late-season invasives

Fire mortality- seeds

- Vulnerable to fire: Up to 85% of seed production from the previous growing season is in the thatch layer (Young et al. 1981)
- Wildfire reduced overall germination 7-fold, and decreased germination of the dominant grasses 50-fold (Cox and Allen 2008).

Mendocino Complex Fire: late July 2018

Prescribed fires: June 2018

For medusahead, both burns decrease seed survival <u>and</u> next year's cover by 98%

For goatgrass, despite high seed mortality, fire effects on first year's cover is more muted

Limited ability of early-season annuals to suppress late-season annuals because of different phenologies

Native perennials can provide direct competition for late-season resources

Changes in cover of noxious weeds depends on who they are competing with

 Noxious weeds are initially higher in natives vs. annual exotic treatments

Native restoration can suppress noxious weeds over time

• Over time, noxious weeds in annual exotics are highly influenced by annual rainfall, vs. natives suppress noxious weeds

Phenological differences provide opportunities for <u>controlling noxious grasses</u>

- Medusahead is virtually eliminated for at least the first year after prescribed and wild fires
- Goatgrass cover decreased by 39% in prescribed fires and 65-70% in wildfires
- Native perennial grasses, once established, provide long-term suppression of noxious weeds, even in highly-favorable years
- Is native grass restoration post-fire an effective longterm strategy for suppressing medusahead and goatgrass?