

Acknowledgements

- D'Antonio VEG Lab
- Lisa Stratton
- Wayne Chapman
- Ryan Clark
- Wayne Ferren
- Darwin Richardson
- Beau Tindall
- Ryan Lippitt
- Shaina Healey
- Johnny Alonzo
- Andy Lanes
- Evan Hobson

- Cat Reilly
- Kelly Hildner
- Kipp Callahan
- Jessica Nielsen
- Angela Rauhut
- Valerie Olson
- D'Antonio Lab
- & all staff, student workers, & interns!

UC SANTA BARBARA
Undergraduate Research
& Creative Activities

What are vernal pools?

 Seasonally-flooded, rainfed wetlands

What are vernal pools?

- Seasonally-flooded, rainfed wetlands
- High biodiversity & endemism

• Endangered ecosystem: <5% of historic range remains

Modoc Plateau

U.S. Drought Monitor

California

September 15, 2015

(Released Thursday, Sep. 17, 2015) Valid 8 a.m. EDT

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Сиптепт	0.14	99.86	97,33	92,36	71.08	46.00
Last Week 98/2015	0.14	99.86	97 35	92.36	71.08	46.00
3 Months Ago 616/2015	0.14	99.86	98.71	94,59	71.08	46.73
Start of Calendar Year 12302 014	0.00	100.00	98.12	94.34	77,94	32.21
Start of Water Year 930/2014	0.00	100.00	100.00	95.04	81.92	58.41
One Year Ago 9/16/2014	0.00	100.00	100.00	95.42	81.92	58.41

Intensity:

The Drought Monitor focuses on broad-scale conditions.

Local conditions may vary: See accompanying text summary for forecast statements.

Author:

Chris Fenimore NOAA/NESDIS/NCEI

ool Regions nizo ntral Coast ce-Napa ermore ndocino doc Plateau rtheastern Sacramento Valley rthwestern Sacramento Valley Diego Joaquin Valley nta Barbara ita Rosa ma Valley ano-Colusa the astern Sacramento Valley them Sierra Foothills stern Riverside County n Joaquin Valley Western Riverside County

In-tact ecosystem

Restored ecosystem

In-tact Restored ecosystem

In-tact ecosystem Restored ecosystem

How can invasive feedbacks be overcome to sustain a stable restored ecosystem?

- H1: Layer of built-up thatch promotes nonnative germination but suppresses native germination
 - → Annual summer removal of thatch will decrease nonnative cover & increase native cover
- H2: Build-up of thatch prevents native seed rain from contributing to the seed bank
 - → Annual addition of native seed will further increase native diversity

Blocked experimental design: 1 block = 3 pools

Blocked experimental design: 1 block = 3 pools

Treatment 1: thatch removal

Treatment 2: thatch disturbance

Treatment 3: no thatch manipulation (control)

1.5m

buffen

= treatment area

= permanent quadrat

Treatment 1 + native seed

Treatment 2 + native seed

Treatment 3 + native seed

Edge Zone

Transition Zone

Botttom/

macrostachya Zone

1.5m

1.5m

1.5m buffer

Phalaris lemmonii

Hordeum brachyantherum

Stipa pulchra

Juncus occidentalis

Grindelia camporum

Thatch removal decreased thatch cover

Thatch removal decreased nonnative cover

How can invasive feedbacks be overcome to sustain a stable restored ecosystem?

- H1: Layer of built-up thatch promotes nonnative germination but suppresses native germination
 - → Annual summer removal of thatch will decrease nonnative cover & increase native cover
- **H2:** Build-up of thatch prevents native seed rain from contributing to the seed bank
 - → Annual addition of native seed will further increase native diversity

How can invasive feedbacks be overcome to sustain a stable restored ecosystem?

Invasive feedbacks

- **H1:** Layer of built-up thatch promotes nonnative germination but suppresses native germination
 - → Annual summer removal of thatch will decrease nonnative cover & increase native cover
- H2: Build-up of thatch prevents native seed rain from contributing to the seed bank
 - → Annual addition of native seed will further increase native diversity

Seed addition increased native richness

How can invasive feedbacks be overcome to sustain a stable restored ecosystem?

- H1: Layer of built-up thatch promotes nonnative germination but suppresses native germination
 - → Annual summer removal of thatch will decrease nonnative cover & increase native cover
- H2: Build-up of thatch prevents native seed rain from contributing to the seed bank
 - → Annual addition of native seed will further increase native diversity

- Restoration projects must include long-term management plans
- to ensure site stability
- that target invasive feedbacks
- that are feasible (cost-effective & time-efficient)

Summer	Fall	Winter	Spring
Thatch	Native seed addition	Hydrology	Vegetation
removal		monitoring	monitoring