High salinity exposure does not preclude germination of invasive *Iris pseudacorus* from populations along a Delta – San Francisco Estuary salinity gradient

Morgane B. Gillard¹, Jesús M. Castillo², Mohsen Mesgaran³, Caryn J. Futrell¹, Brenda J. Grewell¹

¹ USDA-ARS Invasive Species and Pollinator Health Research Unit, Department of Plant Sciences, University of California, Davis
 ² Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, 41080, Spain
 ³ Department of Plant Sciences, University of California, Davis

Agricultural Research Service

Introduction Impact of salinity on freshwater aquatic plants

Seed exposure to salinity often leads to:

- Lower germination fraction
- Total, partial or no recovery

 Tolerance to salinity depends on species and on the degree of local adaptation by populations

 \rightarrow Salinity increase due to sea level rise: a way to manage invasive macrophytes?

Introduction

Agricultura

DEPAREMENT or PLANT SCIENCES

Research

ervice

USDA

Iris pseudacorus is spreading in California tidal wetlands

Present in:

- Freshwater water bodies
- Tidal wetlands

→ Tolerates some range of salinity levels

Recently spread into brackish tidal wetlands of the Suisan March, San Francisco Estuary

Sensitive ecosystem, presence of threatened and endangered species

Knowledge about the ecology of the species needed to establish management plans

- I. pseudacorus reproduces almost exclusively through sexual reproduction (Lamote et al. 2002, Gaskin et al. 2016)
- Seeds are buoyant for months → Hydrochory (Coops et al 1995, van der Broek et al. 2005)
- Few existing information about its germination

Objective

Determine at which extent the germination of *Iris pseudacorus* is impacted by different salinity and water levels

Hypothesis:

1) Seed germination fraction will decrease as salinity level increases

2) The seeds from a parental population that experienced some salinity level will be more tolerant to salinity than that from a parental population only exposed to freshwater

3) Seeds will germinate better in moist conditions than in flooded conditions

DEPARTMENT or PLANT SCIENCES

Service

- 2 populations
- 6 replicates per treatment (lots of 25 seeds)
- 55 days in greenhouse conditions

CDAVIS

DEPARTMENT or PLANT SCIENCES

Introduction Seed germinability and germination velocity

Methods

Results

Agricultural

Research

Service

CDAVIS

DEPARTMENT or PLANT SCIENCES

USDA

Materials &

- No population effect
- Greater germination in freshwater
- At 10 g.L⁻¹, greater germination in flooded conditions
- No germination at 20 and 35 g.L⁻¹

- No population effect
- Slower germination at 10 g.L-1
- Faster germination in flooded conditions

Recovery to salinity exposure Introduction Materials & Water level Methods 100-25 Flooded Mean Germination Time (days) Moist 80 ab 20 Results Germinability (%) Population 60 · ● BC ▲ CS 15 40 10 20 5 $O \land O \land$ $0\Delta_{0\Delta}$ 0 NA 35 10 20 0 35 0 10 20 Salinity (g.L-1) Salinity (g.L⁻¹) Slower germination of seeds that No population effect had been exposed to 10 g.L⁻¹ Few more germination after exposure to 10 g.L⁻¹ Faster recovery after exposure to 20 g.L⁻¹ Difference between moist and flooded conditions at 10 g.L⁻¹ is maintained

Good recovery of seeds exposed to 20 and 35 g.L⁻¹

Agricultural

DEPARTMENT or PLANT SCIENCES

Research

Service

USDA

USDA

Agricultural

Research

Service

CDAVIS

DEPARTMENT or PLANT SCIENCES

Introduction	Summary of the results
Materials & Methods	Hypothesis:
Results	 Seed germination fraction will decrease as salinity level increase → 90% germination at 0 g.L⁻¹ → 70% germination at 10 g.L⁻¹
Discussion & Conclusions	→ No germination at 20 and 35 g.L ⁻¹ 2) The seeds from a parental population that experienced some salinity level will be
	more tolerant to salinity than that from a parental population only exposed to freshwater \rightarrow No population effect on germination, no local adaptation
	 3) Seeds will germinate better in moist conditions than in flooded conditions → Seeds in flooded conditions showed better performances: - Faster germination - Greater germination at 10 g.L⁻¹
	\rightarrow No difference during recovery after exposure to 20 and 35 g.L ⁻¹
USDA Agricultural Research Bervice PLA	Cal-IPC Symposium 2019 – Riverside – October 15-18, 2019

×

Introduction	Implications for management
Materials & Methods	 High salinity does prevent seed germination, if they stay exposed to high salinity levels High recovery capacities once exposed to freshwater → Prolongated period of exposure to seawater does not impede germination capacities of invasive <i>I. pseudacorus</i>
Results	
Discussion & Conclusions	
	seawater freshwater
	Increasing salinity is unlikely to prevent the spread of <i>I. pseudacorus</i>

Acknowledgements

Brenda J. Grewell Joy Futrell Mohsen Mesgaran Jesús M. Castillo

Jessica Drost Reina L. Nielsen Rebecca A. Reicholf

Christy M. Morgan

Thank you for your attention