Mesembryanthemum crystallinum reduces ecosystem functions on San Nicolas Island

Denise Knapp, Fritz Light, & Christopher Garoutte

Thanks to funding from the U.S. Navy via Bill Hoyer

Invader Impact Information helps us prioritize conservation efforts and design solutions

Nutrient cycling

Seed dispersal

Pollination

Parasitism

Herbivory

Invertebrates are *Excellent* indicators

Invasive plant impacts follow the food chain. On San Nicolas Island, this ends at Island Foxes.

C'CHIEN LEE

Bill Hoyer

Santa Barbara

Riverside

San Nicolas Island

Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO Data MBARI Data LDEO-Columbia, NSF, NOAA

Mesembryanthemum crystallinum (MECR) invades the California coast and islands

Aizoaceae (few native species = Taxonomic Isolation)

On San Nicolas: MECR, MECR, everywhere

Highly adaptable + Long-lived seeds = Difficult to manage

MECR can accumulate salts on the soil surface

Vivrette & Muller 1977, Ecological Monographs

What does this mean for the invertebrates?

METHODS

3 Study Sites:

42 plots at each site: 36 MECR, 6 adjacent native

We Used Pitfall Trapping to Capture Ground-Active Arthropods

We ID'ed arthropods to family and "morphospecies"

We get our ecological question answered across an array of taxa, then entomologists get the specimens

Encyrtidae 7: **A new wasp genus discovered through this project**

RESULTS

11,048 arthropod individuals (192 morphs) were assessed.

Arthropod richness was lower in MECR at two sites, higher at one.

Site (BB, CP, SD), Plot Type (MECR, NTV)

MECR NTV

All three sites had different arthropod composition in native vs. MECR plots

Which arthropods used <u>Mesembryanthemum</u>?

Barklice, Bristletails, Mealybugs, & Springtails were Indicator Species.

Trogiidae1

Liposcelididae1

Trogiidae2

Meintertellidae1

Pseudococcidae3

Emtomobryidae1

Which arthropods used native vegetation? (part 1)

Leafhoppers, Moths, Gall Midges, Aphids, Wasps and Beetles

Cicadellidae9

Gelechiidae1

Cecidomyiidae1

Aphididae3

Platygastrididae1

Encyrtidae6

Sphecidae3

Melyridae1

Which arthropods used native vegetation? (part 2) Ants, Ants, Flies, Flies...

Formicidae 3: Tapinoma sessile

Formicidae5: Monomorium ergatogyna

Formicidae 1: Dorymyrmex insanus

Heleomyzidae5

Heleomyzidae2

Sarcophagidae2

The diversity of arthropod functional groups was lower in MECR plots at two sites.

DISCUSSION

At heavily invaded BB, plant richness begets arthropod richness.

Kendall's Tau correlation: 0.49

At the drier CP site, soil moisture was most important.

At the more open backdune site of SD, arthropod richness benefitted from \uparrow plant litter.

Those lost arthropods were important to the struggling island fox.

Now, how do we recover these plants and "bugs"?

Navy seeking cost-effective restoration technique for a large scale

Our approach:

- Grow-kill MECR and hydroseed*
 - Grow-kill MECR, no hydroseed
- Herbicide MECR and hydroseed
- Herbicide MECR, no hydroseed
- No MECR treatment and hydroseed
- No MECR treatment, no hydroseed

Kodiakdevelopmentgroup.com

*ideal for an eroded island like San Nicolas

October-January 2016-2017: "Grow–Kill" to stimulate the seedbank, flush salts

February 2017: Backcountry hydroseeding to secure the space

The "Turbo-Turf HS-50-M"

Our diverse seed mix

- Abronia umbellata
- Achillea millefolium
- Acmispon argophyllus
- Amblyopappus pusillus
- Astragalus traskiae
- Calystegia macrostegia
- Daucus pusillus
- Deinandra clementina
- Dudleya virens
- Eriogonum grande var. timorum
- Isocoma menziesii
- Lepidium lasiocarpum var. lasiocarpum
- Leptosyne gigantea
- Lupinus albifrons var. douglasii
- Lomatium insulare
- Malacothrix foliosa var. polycephala
- Oligomeris linearifolia
- Spergularia macrotheca var. macotheca

Results: Both methods killed MECR...

Herbicide killed MECR slightly better

Legend

- 0-0 No Action Control
- 0-H No Weeding Hydroseed
- GK 0 GrowKill NoSeed
- GK-H GrowKill Hydroseed
- H-0 Herbicide NoSeed
- H-H Herbicide Hydroseed
- NTV Native Control

Caliche Plateau: MECR loss, 2016-2017

But, Grow-Kill retained more plant species (higher native cover, too)

Seeds germinated, things were going great... and then the 2017-2018 drought happened. There's just no quick fix.

An argument for biocontrol.

Questions?

