

Trait evolution along a climate gradient in California wild radish

Shana R. Welles and Jennifer L. Funk Chapman University California Invasive Plant Council Symposium

Root:Shoot Allocation

Trade-off between growth rate and water use efficiency

(Huxman et al 2008; Huxman et al 2013)

Species traits determines community composition

WUE

Huxman et al (2013)

In this study we ask how traits vary between populations of an invasive species.

California Wild Radish

Х

Raphanus raphanistrum Jointed Charlock Pl. 20. Radis cultivé. Raphanus sativus L.

Raphanus sativus Crop Radish

California Wild Radish

Collection Locations

Collection Locations

Questions

- How do traits associated with adaptation to arid environments vary between populations of California Wild Radish along a climate gradient?
- How do traits within California wild radish compare with its crop progenitor?

Potted Plant Experiment

Traits Measured

- Leaf Number
- Days to flowering
- SLA
- Root:shoot allocation
- Water-Use Efficiency
- Leaf N
- Leaf C

Days to Maturity

Root:Shoot Allocation

 $R^2 = 0.41 p = 1.53 x 10^{-10}$

SLA by Region

 $R^2 = 0.09 p = 0.010$

Leaf Number 8 Weeks

 $R^2 = 0.27 p = 1.31 \times 10^{-5}$

Traits Summary

Trait	Populations	Regions	Crop vs. Wild
Phenology	\checkmark	×	×
Root:Shoot	✓	1	\checkmark
SLA	×	×	\checkmark
Leaf Number	✓	×	×
Root number	1	×	✓
Leaf Carbon	×	×	×
Leaf Nitrogen	×	×	×
Water Use- Efficiency	×	×	×

Summary

- Root:shoot allocation and phenology differ between populations along the climate gradient
- Root:shoot allocation is most strongly associated with climate
- Root:shoot allocation, SLA and Root number differ between crop and wild individuals

Implication for Management

- How populations adapt can help us understand how invasive species ranges expand
- ??

Thank you

Z. Carter Berry, Olivia Durant, Neha Nadeem, Hana Nuetz, Monica Nguyen, Justin Valliere Funding: Chapman University Grand Challenges Initiative

Leaf Number – 4 wks

 $R^2 = 0.14 p = 0.005$

Leaf Number – 6 wks

 $R^2 = 0.25 p = 3.22 x 10^{-5}$

Root Number

 $R^2 = 0.23 p = 3.98 \times 10^{-4}$

Root: Shoot by Population

 $R^2 = 0.41 p = 1.55 \times 10^{-8}$

Leaf Nitrogen

Leaf Carbon

% Carbon

Water-Use Efficiency

