Assessment of *Phytophthora* at restoration sites in the Midpeninsula Regional Open Space District Ebba Peterson, Jennifer Parke, Joyce Eberhart, Neelam Redekar Oregon State University

CAL-IPC Oct 2018

Movement of Phytophthora in Wildlands

Wildlands

Movement of Phytophthora in Wildlands

Objectives

- Determine the distribution of *Phytophthora* at MROSD revegetation sites & surrounding wildlands.
- Be able to identify future planting sites as either a high or low risk for *Phytophthora*.

Methods: Site Selection

- Revegetation (<u>Planted</u>) Sites
- <u>Unplanted-disturbed</u> Sites
 - Planned projects & un-remediated areas
- <u>Unplanted-control</u> Sites
 - Adjacent forest / similar habitat
 - Shared species
 - Upstream / uphill of reveg sites and major disturbances
- December 2017: 20 planted sites
 7 unplanted-disturbed sites
 18 unplanted-control sites

Methods: Soil & Plant Collection

For each site:

- 6 soils samples (2 individuals for 3 species)
 - mimulus, madrone, toyon, coffee berry (45%)
- Preferentially sampled those with dieback symptoms

<u>Illumina MiSeq (10 g)</u>

DNA sequences ~150 base pairs

aagtgtcgccac aacggcctactg aagtacgtcata aaggcgtaggc aaggcgtaggc

"OTU" – Operational Taxonomic Unit DNA sequences that are similar enough to be classified as coming from the same species (or group of species)

"cluster" – distinct species, but we cannot differentiate between them with Illumina

"complex"- differentiation between species unclear or under recent review

P. nemorosa, P. ilicis, P. pseudosyringae, o P. pluvialis

P. cryptogea, P. pseudocryptogea, P. erythroseptica, P. sp."kelmania", or P. himalayensis

<u>Illumina</u>	<u>MiSeq (10 g)</u>
	DNA sequences ~150 base pairs
5 reads of 4 OTUs	aagtgtcgccac aacggcctactg aagtacgtcata aaggcgtaggc aaggcgtaggc
<i>P. ilicis, ngae,</i> or	<u>99% match</u> <i>R cinnamomi</i> <i>P. nemorosa</i> -cluster
itoaea	<i>P. cryptogea</i> -complex <i>P.</i> sp. unknown

Benefits

Drawbacks

- Can process large amounts of soil
- Selects for those species that can be baited
- Success is subject to seasonal changes

<u>Illumina MiSeq (10 g)</u>

DNA sequences ~150 base pairs

P. cinnamomi P. nemorosa-cl. *P. cryptogea*-co. *P.* sp. unknown *P.* sp. unknown

- Can detect multiple species and genera in a single sample
- Can only process small amounts of soil
- Not all species detected may be capable of causing disease

274 samples collected

168 cultures submitted for identification

260 samples submitted for Illumina MiSeq sequencing

Baiting (+) Illumina (+)

Skyline Ridge

Planted Sites

ambivo

000

cactorum-complex sp. unknown clandestina

> Unplanted-<u>Disturbed Site</u> no *Phytophthora* no *Phytophthora*

Unplanted-Control Site

P. cambivora-complex P. formosa P. quercina P. nemorosa-cluster P. uliginosa-cluster

Baiting

Isolated *Phytophthora* from 32 samples (11.7% of those baited)

Spaciae (O total)	No.
Species (9 total)	samples
P. cambivora	13
P. cactorum	7
P. ramorum	5
P. cinnamomi	2
P. multivora	1
P. cryptogea	1
P. erythroseptica	1
P. nicotianae	1
P. syringae	1

OTU (25 total)	No. samples
P. nemorosa-cluster	51
P. cactorum-complex	29
P. sp.unknown	15
P. syringae	12
P. quercina	13
P. uliginosa-cluster	12
P. chlamydospora	7
P. lateralis	5
P. cryptogea-complex	5
P. citricola-complex	4
P. ramorum	4
P. cambivora-complex	4
P. cinnamomi	3
other sp. (12 OTUs)	24

Baiting

Isolated *Phytophthora* from 32 samples (11.7% of those baited)

Spaciae (O total)	No.
Species (9 total)	samples
P. cambivora	13
P. cactorum	7
P. ramorum	5
P. cinnamomi	2
P. multivora	1
P. cryptogea	1
P. erythroseptica	1
P. nicotianae	1
P. syringae	1

OTU (25 total)	No. samples
P. nemorosa-cluster	51
P. cactorum-complex	29
P. sp.unknown	15
P. syringae	12
P. quercina	13
P. uliginosa-cluster	12
P. chlamydospora	7
P. lateralis	5
P. cryptogea-complex	5
P. citricola-complex	4
P. ramorum	4
P. cambivora-complex	4
P. cinnamomi	3
other sp. (12 OTUs)	24

Baiting

Isolated *Phytophthora* from 32 samples (11.7% of those baited)

Spaciae (O total)	No.
Species (9 total)	samples
P. cambivora	13
P. cactorum	7
P. ramorum	5
P. cinnamomi	2
P. multivora	1
P. cryptogea	1
P. erythroseptica	1
P. nicotianae	1
P. syringae	1

OTU (25 total)	No. samples
P. nemorosa-cluster	51
P. cactorum-complex	29
P. sp.unknown	15
P. syringae	12
P. quercina	13
P. uliginosa-cluster	12
P. chlamydospora	7
P. lateralis	5
P. cryptogea-complex	5
P. citricola-complex	4
P. ramorum	4
P. cambivora-complex	4
P. cinnamomi	3
other sp. (12 OTUs)	24

Baiting

Isolated *Phytophthora* from 32 samples (11.7% of those baited)

Spaciae (O tatal)	No.
Species (9 total)	samples
P. cambivora	13
P. cactorum	7
P. ramorum	5
P. cinnamomi	2
P. multivora	1
P. cryptogea	1
P. erythroseptica	1
P. nicotianae	1
P. syringae	1

OTU (25 total)	No. samples
P. nemorosa-cluster	51
P. cactorum-complex	29
P. sp.unknown	15
P. syringae	12
P. quercina	13
P. uliginosa-cluster	12
P. chlamydospora	7
P. lateralis	5
P. cryptogea-complex	5
P. citricola-complex	4
P. ramorum	4
P. cambivora-complex	4
P. cinnamomi	3
other sp. (12 OTUs)	24

Phytophthora represents a small proportion of total OTU reads

Phytophthora equally prevalent in planted and unplanted sites

Phytophthora equally prevalent in samples from planted and unplanted sites

Species composition does vary slightly by site-type

no. samples in which a species was detected

Phytophthora ramorum

250

500 Feet

Cape Ferrelo Curry County OR

Phytophthora ramorum

250

500 Feet

Cape Ferrelo Curry County OR

Phytophthora nemorosa

P. pluvialis

P. nemorosa (+)

Timeus Ranch, Brookings, OR Google maps captured 02/06/14

Species composition does vary slightly by site-type

no. samples in which a species was detected

P. quercina detected 2016 (first detection in U.S.) *Quercus lobata* planted 2002

Phytophthora quercina

Conclusions & Caveats:

- *Phytophthora* was detected in nearly all sites, but some were much more infested than others.
- Planted and disturbed areas had a greater diversity of species, likely resulting from the introduction of *Phytophthora*.
- Unplanted areas still had a large number of species, including those known to be invasive.
 - Complex disturbance histories contributes substantially to *Phytophthora* diversity.
 - Environment is very conducive for establishment, but not all species are everywhere!

Conclusions & Caveats:

- *Phytophthora* was detected in nearly all sites, but some were much more infested than others.
- Planted and disturbed areas had a greater diversity of species, likely resulting from the introduction of *Phytophthora*.
- Unplanted areas still had a large number of species, including those known to be invasive.
 - Complex disturbance histories contributes substantially to *Phytophthora* diversity.
 - Environment is very conducive for establishment, but not all species are everywhere!

Conclusions & Caveats:

- *Phytophthora* was detected in nearly all sites, but some were much more infested than others.
- Planted and disturbed areas had a greater diversity of species, likely resulting from the introduction of *Phytophthora*.
- Unplanted areas still had a large number of species, including those known to be invasive.
 - Complex disturbance histories contributes substantially to *Phytophthora* diversity.
 - Environment is very conducive for establishment, but not all species are everywhere!

Conclusions & Caveats (cont.):

- DNA-only detections may be remnants of prior introductions. Not all introduced species establish, and not all cause substantial disease.
- ... however the long-term outlook is poorly understood:
 - *Phytophthora* can persist in soils and may cause disease later on or on different hosts
 - Disease development may be slow
 - Disease may only occur at specific stages like regeneration
- BMPs should be implemented to minimize *Phytophthora* movement.

Conclusions & Caveats (cont.):

- DNA-only detections may be remnants of prior introductions. Not all introduced species establish, and not all cause substantial disease.
- ... however the long-term outlook is poorly understood:
 - *Phytophthora* can persist in soils and may cause disease later on or on different hosts
 - Disease development may be slow
 - Disease may only occur at specific stages like regeneration
- BMPs should be implemented to minimize *Phytophthora* movement.

Conclusions & Caveats (cont.):

- DNA-only detections may be remnants of prior introductions. Not all introduced species establish, and not all cause substantial disease.
- ... however the long-term outlook is poorly understood:
 - *Phytophthora* can persist in soils and may cause disease later on or on different hosts
 - Disease development may be slow
 - Disease may only occur at specific stages like regeneration
- BMPs should be implemented to minimize *Phytophthora* movement.

Special Thanks

- Midpeninsula Regional Open Space District
 - Amanda Mills
 - Jamie Hawk
 - Coty Sifuentes-Winter
 - Cindy Roessler
- Parke lab (Oregon State University)
 - Dr. Jennifer Parke
 - Dr. Neelam Redekar
 - Joyce Eberhart
 - The many undergraduates

Recovery by Plant Health

Recovery by Plant Health

Recovery by Plant Health

