THE COMPLEXITY OF RESTORING COMPLEXITY

Amelia Ryan Brent Johnson **Pinnacles National Park**

Pinnacles Expansion:

Acquisition of over 2000 acres in 2006

Bottomlands Restoration

Goals:
Manage invasives
Restore Oak Savannah with diverse native communities

Invasive Plants

the second secon

120 Acres of YST Burned

Broadcast Herbicide Treatment April 2010

YST Density Before Any Treatments

YST Density After Prescribed Burning Treatment

YST Density After Broadcast Herbicide Treatment

YST Density After Broadcast Herbicide Treatment

Bottomlands Restoration – Phase 1

- Successful reduction of yellow star thistle to <1% for 7 years
- •Replacement with annual grasses

Bottomlands Restoration – Phase 2

- •What should our target native plant communities be?
- •How to restore them?

Native Perennial Grasses?

•60 Acres Seed drilling 2014-2016

Wildflower dominated habitats

- How does focusing on wildflowers shift the way we think about historic landscapes and restoration
- •What are key aspects of wildflower dominated habitats?

"When California was wild, it was one sweet bee-garden throughout its entire length, north and south, and all the way across from the snowy Sierra to the ocean"

John Muir – *The Bee Gardens*

Pinnacles National Park has the highest diversity of bees ever recorded (Messinger and Griswold 2003)

479 species and counting...

HOW TO RESTORE

KEY CHALLENGES:1)Thatch2) Wildflower seedbank

Experimental Wildflower plots

- Seeded with 10 species of wildflower
- Worked with the Amah Mutsun tribal band to select ecologically appropriate and culturally significant species
- 600 seeds/m²
- 4 site treatments: Fall Herbicide + Seeding (H1) Spring + Fall Herbicide + Seeding (H2) Scraping + Fall Herbicide (SS) Control

Percent Cover

Experimental Wildflower Plots – Year 2

Treatment

Treatment

Treatment

YEAR THREE?

Next Steps

- Collect and increase wildflower seed
- Scale up scraping treatment
- Experiment with grazing and mowing to reduce thatch and summer mustard long term in a sustainable way
- Quantify pollinator use?

•<u>More research and more experimental</u> restoration aimed at wildflowers

oming soon?

Thanks to <u>Mike Shelley</u>, NPS, and <u>Rick Flores</u>, UCSC Arboretum the Amah Mutsun Tribal Band Dr. Karin Holl, UCSC ACE Interns: Karina Garcia and Josh Mosebach Alison Haddad and Emily Klepper

QUESTIONS?