An Assessment of the Hazard of the Herbicide Rodeo[®] and the Non-ionic Surfactant R-11[®] to Non-target Aquatic Invertebrates and Larval Amphibians

"Killing only the bad things" "Using our powers for good and not for evil"

Joel Trumbo Staff Environmental Scientist Pesticide Investigations Unit CA Dept of Fish & Game

There's nothing quite so disconcerting to the general public as the statement "According to government scientists...."

What's so important about killing the weeds and not other things?

Amphibian decline
 Concerns about toxics (their role in amphibian decline?)
 Controlling invasives vs protecting natives
 Biodiversity

Glyphosate Herbicide An Effective Tool for Exotic Invasive Weed Control

TERRESTRIALS

Giant cane
 Salt cedar
 Ailanthus

Water primrose
 Parrotfeather
 Purple loosestrife

AQUATICS

Two Important Issues

Many of these weeds are found in or near water where other native species are present.

1.

2.

"Aquatic" glyphosate works better when you add a surfactant to the tank.

Some Other Stuff to Wring Our Hands Over...

Some surfactants pose a higher toxicity risk than herbicides. (i.e. Rodeo & R-11)

Lingering concerns about glyphosate toxicity to non-targets.

So, what's the question?

If you use a glyphosate herbicide with a surfactant, can you kill the weeds without killing the frogs?

HAZARD = TOXICITY X EXPOSURE

Elements of the Experiment

STEP 1: apply the herbicide/surfactant to water

STEP 2: determine herbicide & surfactant concs. in the treated water (exposure)

STEP 3: find out what tankmix conc. is toxic to tadpoles (toxicity)

STEP 4: Look at the results of Step 3 in relation to the results of Step 2. One More Thing... The Worst-Case Scenario Approach

Herbicide/surfactant applied directly to water

High use rates (5pts/ac...max is 7.5)

and something else...

Does this help?

One More Thing... The Worst-Case Scenario Approach

Herbicide/surfactant applied to water

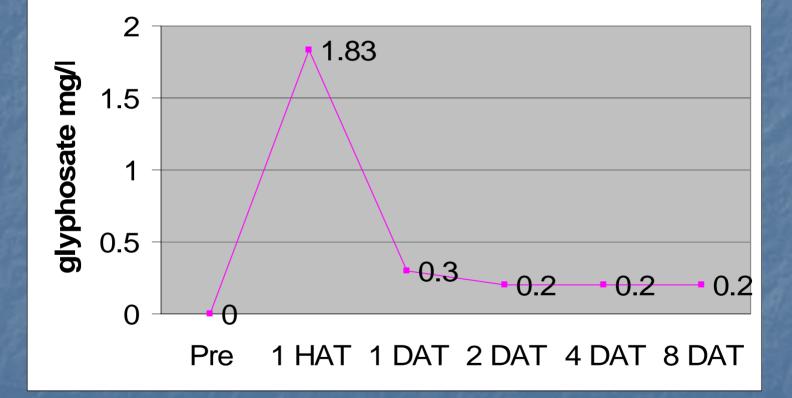
High use rates

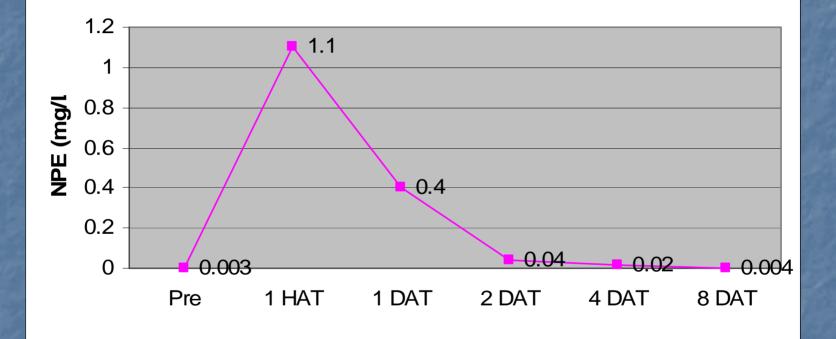
No aquatic vegetation present

No pond outlet

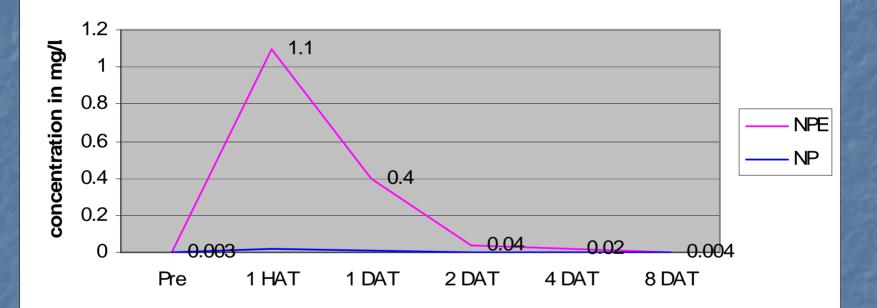
The Application

 Rodeo[®] 1% tankmix (5pts/surface acre)

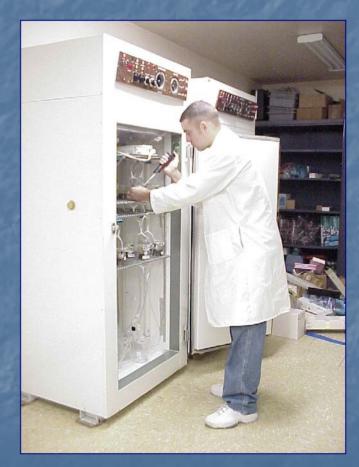

R-11[®] : 0.5% tankmix
Hose gun application


Herbicide & Surfactant Residue Analyses

3 sampling locations in the treated pond 1 untreated control pond Pretreatment samples were collected One hour post-treatment (1 HAT) One day after treatment (1 DAT) 2, 4 and 8 DAT Glyphosate, AMPA, NPE and NP


Glyphosate Concentraton in Treated Pond

NPE Concentration in Treated Pond



Tadpole Toxicity Test

 96-h toxicity tests
 Mortality endpoint
 Larval leopard frogs *Rana pipiens* (7-d)
 5 test solutions of herbicide/surfactant

Toxicity Test Results

Dilution No.	Glyphosate (mg/L)	NPE (mg/L)	NP (mg/L)	Survival (%)
19 . 6				
1	17.6	4.5	<mdl< td=""><td>0*</td></mdl<>	0*
2	8.7	2.5	<mdl< td=""><td>0*</td></mdl<>	0*
3	4.5	1.0	<mdl< td=""><td>92.5</td></mdl<>	92.5
4	2.4	0.6	<mdl< td=""><td>100</td></mdl<>	100
5	1.3	0.3	<mdl< td=""><td>100</td></mdl<>	100
96-h LC ₅₀	6.5	1.7	NA	NA

* Indicates survival significantly less than control group (P<0.05)

Puttin' it All Together: Glyphosate

[Glyphosate] ^{max} = 1.83 mg/L (ppm)
 [Glyphosate]^{1 DAT} = 0.3 mg/L
 [Glyphosate]^{4 DAT} = 0.3 mg/L
 [Glyphosate]^{8 DAT} = 0.2 mg/L
 Min. detection = 0.02 mg/L
 96-h LC₅₀ tadpoles: 6.5 mg/L

Puttin' it All Together: NPE

[NPE] ^{max} = 1.1 mg/L (ppm)
[NPE]^{1 DAT} = 0.4 mg/L
[NPE]^{4 DAT} = 0.02 mg/L
[NPE]^{8 DAT} = 0.004 mg/L
Min. det = 0.0002 mg/L
96-h LC₅₀ tadpoles: 1.7 mg/L

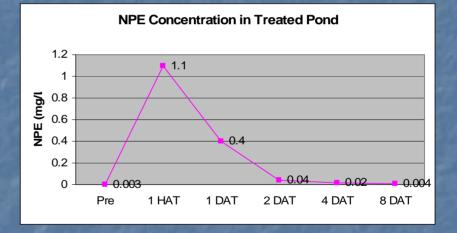
Puttin' it All Together: NP

[NP] ^{max} = 0.02 mg/L (ppm)
[NP]^{1 DAT} = 0.005 mg/L
[NP]^{4 DAT} = 0.001 mg/L
[NP]^{8 DAT} = 0.001 mg/L
Min. det = 0.0002 mg/L
96-h LC₅₀ fish: 0.13 mg/L

Hazard Quotient

HQ = exposure ÷ toxicity value A HQ < 1 is an acceptable risk (USEPA)</p> ■ Glyphosate: 1.8/6.5 = 0.2 **NPE:** 1.1/1.7 = 0.6NP: ??? No NP detected in tox test sol'ns

Summary Glyphosate


Both concentration and exposure time appear insufficient to cause acute mortality of tadpoles.

[Glyphosate] ^{max} = 1.83 mg/L
 29% of LC₅₀ value at 1-h peak
 Hazard Quotient: 0.2 (HQ<1 are safe)

Summary NPE

Exposure time appears insufficient to cause acute mortality of tadpoles.

 [NPE] ^{max} = 1.1 mg/L
 100% of LC₅₀ value at 1-h peak
 Hazard Quotient: 0.6 (HQ<1 are safe)

Summary NP

Both concentration and exposure time appear insufficient to cause acute mortality of tadpoles.

[NP] ^{max} = 0.02 mg/L
 15% of LC₅₀ value at 1-h peak
 Hazard Quotient: ???

