BMPs for protecting special status wildlife when using herbicides for invasive plant management.
Johnson, Doug. Cal-IPC. dwjohnson@cal-ipc.org

Invasive weed control can assist in the recovery of special status (i.e. threatened or endangered) plant and animal species by removing exotic competitors or improving habitat quality. In some cases, however, invasive weed control efforts can pose risks to protected species via disturbance or contact with herbicide residues. This manual of Best Management Practices focuses on how wildland managers can reduce their impacts to special status wildlife while using herbicides to control invasive plants. This manual has two intended audiences. First are land managers who are already familiar with the applicable laws related to their work but who are interested in additional ways to reduce potential impacts to wildlife. Second are those who would like to learn more about invasive plant management in natural areas. These BMPs are compiled from the collective field experience of longtime wildland managers. They complement legal requirements for applying herbicides and are intended to strengthen general protection for all wildlife and people. They should be used where they do not conflict with legal requirements for particular species or sites. The general BMPs are broadly applicable to all herbicide treatments. These are followed by BMPs for foliar applications and stem treatments. Many of these BMPs are straightforward and can be easily integrated into standard practice. Others may require additional resources. The manual also includes toxicological data and charts for herbicides most commonly used in natural resource management, based on US Forest Service risk analysis. The manual will be available as a free download at www.cal-ipc.org in Fall 2014.

Fix it if it is broken: using data to simplify and improve the new California NPDES aquatic pesticide permit. Blankinship, Michael. Blankinship & Associates. mike@h2osci.com

Aquatic weed managers have historically relied on herbicides to solve flow, odor and invasive species problems in drinking water reservoirs, ponds, lakes and streams. The environmental fate and toxicity of these herbicides was questioned when the original aquatic pesticide permit was required in 2003, requiring permittees to generate substantial water quality data during and after herbicide application. Statistical methods and rationale will be presented as some of the tools used to successfully argue the case that resulted in a new, less burdensome 2013 permit.

Assessing sensitivity of Quino checkerspot butterfly larvae to two common herbicides used for habitat management. Williams, Kathy. San Diego State University, Department of Biology. kathy.williams@sdsu.edu

In 2005 and 2006, field studies in Marron Valley, CA, showed promising effects of herbicide application for reducing exotic plant growth and improving habitat for food plants of the endangered Quino checkerspot butterfly (Euphydryas editha quino). Therefore, this study was designed to evaluate effects of commonly used herbicides (Fusilade II®, Transline®) and application surfactant on Quino checkerspot butterfly larval development, survival, and pupal weights. The study was designed to assess both direct and indirect effects of herbicide exposure, by comparing larval growth, proportions of larvae pupating, and pupal weights. Performance was compared among larvae that had experienced direct contact with herbicides, surfactant, or water, and that were fed food plants that were exposed to herbicides, surfactant, or water. Two groups of post-diapause larvae were obtained from a captive rearing facility.
Approximately 600 larvae were treated and measured between May and July 2011. Larvae were weighted periodically as they progressed through post-diapause instars towards pupation. Initially larvae grew well and, while there were large differences in weights between the two groups of larvae, there was no significant difference in larval weights among treatments in either group. However, as larvae neared pupation sizes, they stopped feeding and re-entered another diapause instar, which also happens in nature. Although larvae did not pupate, and we could not assess effects of herbicide treatments on pupal weights, results from this experiment suggested that there were no direct or indirect effects on growth of post-diapause Quino checkerspot larvae from exposure to Fosilade or Tranline and/or surfactant. That there was no indication of gross toxicity, and that post-diapause

Region-wide arundo control and restoration in the Delta: an inter-agency collaboration. Mager, Randall. California Department of Water Resources. rcmager@water.ca.gov

Arundo, Arundo donax, is an invasive species introduced to California two to three centuries ago for a variety of uses. It is becoming increasingly widespread in the Sacramento – San Joaquin Delta and is devastating to riparian habitat. Arundo out-competes native riparian plant species, consumes much more water, does not provide nesting or foraging habitat needed for animal species, weakens levees, increases bank erosion during flood events and increases fire severity. The Delta Conservancy is developing a delta-wide long-term Delta Arundo Control and Restoration Program to treat arundo infestations and restore native vegetation to improve habitat along the Delta waterways. This requires coordination with landowners, local public agencies, funding sources and State regulatory agencies. Before initiating a delta-wide program, a pilot project is currently underway in the Cache Slough

Complex to develop expertise in arundo control, effective restoration techniques in the controlled areas, resource requirements, landowner contacts and their cooperation. This pilot project in turn builds upon experience gained elsewhere, and landowner partnerships developed, during a small-scale arundo control project on Hastings Cut between Lindsey and Cache Sloughs. The successful cooperation between landowners, local Reclamation and Resource Conservation Districts, and State agencies is critical to developing a successful, long-term Delta-wide arundo control program.

A collaborative approach to invasive species management in the Mattole watershed. Pinnell, Cassie. Mattole Restoration Council. cassie@mattole.org

The Mattole River drains 300 square miles of northern California’s Lost Coast region in Humboldt County. The majority of the Mattole watershed is privately owned, and in response to the rapid decline in watershed health from extensive logging, the Mattole community acted in the early 1980’s to form one of the first community-based, watershed restoration efforts in the Pacific Northwest. Today, invasive species management is a large component of the Mattole Restoration Council’s restoration priorities, and is included in the majority of our restoration projects. By working with our partner non-profits, agencies, landowners, volunteers, and interns, we have developed a watershed based approach that includes detection, treatment, and monitoring on both public and private lands. Our public lands invasives projects are funded through contracts with agency partners that allow us to manage invasives throughout the coastal prairie, grasslands, and riparian zones in the King Range National Conservation Area, while our private lands projects include a mix of fee for service, volunteer efforts, and foundation funding. We prioritize community education and outreach on invasives, including newsletter articles, pamphlets, fliers, workshops, volunteer opportunities, community meetings, weed pulling field trips and internships for local students. Our Lend-A-Wrench program extends our invasive plant removal efforts throughout the watershed by providing landowners with free and unlimited access to weed wrenches and other tools. We work to deter the establishment of invasives by re-vegetating our restoration sites and private and public lands with native plants cultivated in our native plant nursery (over 40,000 plants grown annually from locally harvested seed) and native grass seed and straw from our ¼ acre native grass farm. By integrating multiple funding sources, agency collaboration, and landowner outreach, we are working to comprehensively target priority invasives on a watershed level.

Invasive Plant Progress 2014 Casanova, Jason. Cal-IPC Board President. cas@watershedhealth.org

New Weed Alerts! DiTomaso, Joe. UC Davis. jdtomaso@ucdavis.edu

Managing invasive plants and bringing back wildlife: the evolution of riparian restoration over 15 years with River Partners. Griggs, Tom. Senior Restoration Ecologist (Ret.), River Partners. tgriggs@riverpartners.org

Riparian restoration along the rivers of the Central Valley started in 1989 when The Nature Conservancy initiated the Sacramento River Project with the goal of restoring wildlife habitat on flood-prone fields adjacent to the river. Trees and shrubs were planted in arrangements and densities that would meet the habitat structure requirements of targeted wildlife. Wildland horticulture is challenging because of limited control over soil depth and heterogeneity, unknown site-specific hydrology, and impacts from invasive weeds. We were successful in establishing the woody plants by aggressively attacking invasives with mechanical and chemical tools. However, once weed maintenance stopped, most invasives returned to dominate the understory. The woody species grew taller than the weeds and could shade them out locally. In the early 1990s several species of native grasses performed well by covering most of a riparian restoration site and replacing invasives as dominant species in the understory. Starting in 2002 River Partners designed and implemented the San Joaquin River NWR riparian restoration project, where the testing of additional understory broadleaf species took place. Experimentation with establishment techniques resulted in rapid establishment of the native herbaceous species to the near total exclusion of invasives. Today at San Joaquin River NWR the native understory is self-sustaining through floods and wildfire. Careful ecological observation and timely horticultural action
will result in the dominance of natives. Management of riparian restoration sites will always require some form of intervention to keep the natives as dominants. As we move into the era of climate change, ecological relationships among species and their physical environment will change – precisely HOW these changes will be manifested is unknown today. Hydrology will be the most influential ecological force affected by climate change. Since the beginning, riparian restorationists have been working within the modified hydrology in the Central Valley, due to dams, diversions, and levees on all rivers. Riparian restorationists have designed successful projects and devised effective land management practices within the currently highly modified hydrology of the Central Valley.

SESSION 3: MANAGEMENT

A means to an end: a systematic approach to eradication of invasive plant species in the Central Valley.

INVASIVE PLANT MANAGEMENT: LESSONS FROM THE SANTA CRUZ DISTRICT OF CALIFORNIA STATE PARKS.

Choosing your battles, prioritizing invasive plant management: lessons from the Santa Cruz District of California State Parks.

The Santa Cruz District of California State Parks has developed a relatively simple system for prioritizing large numbers of both new and existing weed occurrences representing multiple species in a variety of habitats. This system considers seven factors: Management Goal, Rate/Likelihood of spread, Threat to Sensitive Resources, Logistics, Political Concerns, Potential for Success, and Eradication Dividend. Each factor receives a numeric value (much like the Cal-IPC Inventory) which is used to determine each occurrence’s rank.

This talk will expand upon the properties of each of these factors, and the process by which scores are determined. It will also use real world examples of successes and failures from over 15 years of weed work in Santa Cruz and San Mateo counties to illustrate the importance of each factor in the ranking system. It will also address the questions of how frequently prioritization should occur.

Managing California rangelands: effects of weather patterns on plant composition.

Rainfall is a key control on production and composition in California grasslands. While less studied, precipitation may also have a lagged effect, with previous year’s rainfall affecting composition the following year. Here, we ask how different functional groups respond to current and lagged effects of precipitation in order to forecast changes due to increased rainfall variability. We monitored grazed grasslands in three sites in northern California: Sunol Regional Wilderness, Pleasant Ridge Regional Park and Vasco Caves Regional Preserve. At each of the sites, species abundances were measured along four transects in six 50 m2 circular plots. These measurements were repeated for seven years between 2006 and 2012. Using precipitation data collected at each site, we asked whether abundance patterns of major functional groups (based on growth form, life history, origin) were related to the current and previous year’s precipitation. Our analyses indicated that some of the functional groups were responsive to annual precipitation and lagged rainfall (previous year’s rainfall). For example, exotic grasses increased with higher precipitation, especially with lagged years, while in contrast, exotic annual forb abundance decreased. Our results suggest that native diversity may increase while forage production may decline in grazed grasslands with increased drought years in California.

SESSION 4: SPECIES INTERACTIONS

Ustilago bullata, a potential biocontrol for Bromus species.

The Mediterranean exotic annual grasses Bromus diandrus and Bromus rubens are invading much of the remaining coastal sage scrub, native grasslands, and native forland communities throughout California. Changes to soil dynamics and frequency of fire disturbances in invaded areas contribute to Bromus dominance and resistance to restoration attempts. Current control and management of these noxious invasives include prescribed burns, mowing or grazing, and herbicide use, with each method having advantages and disadvantages. Biological control agents that target specific hosts can greatly increase the possibility of restoration. We examined smut disease in Bromus, caused by the fungal pathogen Ustilago bullata, as a potential biocontrol organism. U. bullata infects seedlings and grows systemically, then sporulates in the host inflorescence eliminating viable seed production. Smutted seeds were observed in 0 to 90% of Bromus populations in desert and coastal sage scrub. We also compared species of Ustilago infecting Bromus in its native range (Spain) to species infecting Bromus in its invaded range (California). Smutted host plants Bromus diandrus and Bromus rubens were collected from different vegetation types in southern California and Spain, and stored at room temperature. Direct sequencing of spores from smutted seed heads was conducted for all populations. Spanish populations revealed three species of Ustilago in Bromus rubens including U. bullata, U. hordei, and U. aenae, whereas U. bullata was the only species found infecting Bromus species in California populations. Current work to isolate and germinate telospores for growth chamber inoculation trials is underway. With this information we can determine if Ustilago bullata infects native species or important agricultural crops such as wheat, and thus whether it is a viable biocontrol agent candidate.

Edge effects: native and non-native plant distribution along single and multi-use trails in the Santa Monica Mountains.

Recreational use of trails may result in disturbance of the surrounding biotic communities, with the nature and degree of impact being a function of use type (e.g., hiking, biking, and equestrians) and intensity. Because trails are a consistent source of disturbance, they are vectors for the introduction and spread of non-native, invasive species. Trampling at the trail edge when visitors move aside to avoid conflicts can reduce leaf litter which could aid non-native seed germination. The Santa Monica Mountains have high recreational use (~35 million visitors per year), ~700 miles of trails, and over 400 documented invasive plant populations. We tested whether trailside vegetation had more non-native species (richness and abundance) than interior vegetation along single-use trails (hiker-only) and multi-use trails in two different vegetation types. Controlling for elevation, slope and time since last fire (20-10 years),
we recorded the species, and percent cover of plants and litter using 60 m long transects placed along the trail edge, and four 10 m transects perpendicular to the trail edge for interior measurements. We sampled at 8 paired sites located in coastal sage scrub (a globally threatened drought deciduous, open canopy shrub community, CSS) and chaparral (a dense perennial shrub community with thick litter layers). Trailside vegetation had 280% increase in non-natives compared to interior vegetation, demonstrating different effects on both types of trails and in both plant communities. Multi-use trails had a higher proportion of non-natives than single-use, and the interior had 40% more litter regardless of trail type. CSS showed a significantly greater number and penetration of non-natives than chaparral, with more infestation in multi-use trails compared to single-use. More litter in CSS was positively correlated with fewer non-natives. Our results suggest that multi-use trails are more appropriately established in chaparral rather than CSS.

Invasive legume symbioses: do California invasions follow worldwide trends? La Pierre, Kimberly. UC Berkeley. kimberly.lapierre@berkeley.edu

Ecologists have a long history of examining the role of biotic interactions in determining invasion success. Currently, new molecular tools are driving a rapid understanding of the importance of feedbacks between plants and their associated microbial communities in determining species invasions. Invasive legumes present a particularly interesting case of plant-microbial feedbacks. A legume may successfully invade by obtaining atmospheric nitrogen to outcompete native plants, however this strategy depends upon being able to associate with compatible rhizobia in the exotic range. An invasive legume can either form novel associations with the resident rhizobia in its exotic range or co-invade with rhizobia from its native range; however, both of these strategies depend upon the specificity between a legume species and its rhizobial associates. Here, we examine legume-rhizobia specificity for three invasive legumes in the San Francisco Bay Area: French broom (Genista monspessulana), Spanish broom (Spartium junceum)—and several native legumes in the San Francisco Bay Area through field collections. We further compare the results of this field study to trends of native vs. invasive legume specificity for rhizobial partners identified from a meta-analysis of over 200 studies from around the world. Through this comparison, we can identify whether invasive leguminous shrubs in the Bay Area follow trends similar to those observed around the world, which has important implications for invasive legume management in California.

A river ran through it: restoration on historic gravel bars and weed suppression by native forbs. Rogner, Michael. River Partners. mrogner@riverpartners.org

Dams, diversions, and other development projects have severely degraded river processes throughout California. Riparian restoration efforts have often focused on areas where remnant prime soils can support native woody vegetation such as Populus fremontii, Quercus lobata, and various Salix species. More marginal soil types with high levels of sand, gravel, or cobbles have presented greater challenges, which have often constrained or even prevented restoration efforts. Particularly problematic are areas with poor soils away from river channels which now rarely, if ever, experience larger flood events that could result in significant erosion or deposition. These sites may not contain the appropriate soil characteristics to support native woody species or even perennial grasses. However, they can support a rich diversity of annual and perennial forbs which compete strongly with weeds and provide habitat for wildlife and native pollinators. In 2012 River Partners initiated a trial in Tehama County on a 7-acre historic gravel bar located ~600 meters from the main channel of the Sacramento River, a site that has not flooded since at least 1997. The purpose was to determine a) which species could be collected and germinated at that scale, and b) which could out-compete annual grasses and other weed species which occur in this area. Using local seed sources, we collected eight species (five perennial) that were growing nearby in similar conditions. To prep the site we utilized standard maintenance practices (spraying and mowing) that were also being used on 107 surrounding acres. The site was seeded in December 2012. Monitoring has demonstrated that, in the short term at least, these forb species are capable of establishing on marginal soils without supplemental irrigation or chemical weed control, and that they can be grown densely enough to suppress many weed species.

SESSION 5: RESTORATION
Assessing effectiveness of management actions on recovery of coastal sage scrub plant communities over time. Dickens, Sara Jo. UC Berkeley. sara.jo.dickens@berkeley.edu

Highly degraded sites are often the result of long-term disturbance and invasion histories; and, the path of recovery/restoration rarely follows the reverse path of degradation. Novel trajectories and states may occur and direct the type of intervention needed to restore the system. We analyzed data from a 15 year weed program within the Nature Reserve of Orange County, CA. Our objectives were to describe the current vegetation community, tease apart trends due to management efforts versus environmental and land use legacies, identify “stuck” or novel sites and determine thresholds in both native and weed species abundance allowing for further unassisted recovery. In spite of a long-term control program, exotic plant species continue to dominate the reserve as a whole. However, assessment of exotic cover classes and native cover and richness classes over time revealed a substantial reduction in targeted exotic (Cynara cardunculus (CYCA) and Brassica nigra (BRN)) and an increase in both native cover and richness. The increase in exotic cover was largely non-targeted exotic annual gasses which doubled in cover between 2008 and 2013. Out of 109 sites 14 lost native cover, 10 are “stuck” and 82 had increased native cover at various rates. Sites that were associated with greater increases in native cover had higher elevation, more recent fire and were larger in size. Land use legacies of grazing were important to exotic species cover. Control of CYCA was an important factor in native recovery as sites that were historically most invaded had the highest recovery rates. Additionally, sites that were treated a greater number of times also had greater native cover. Several trajectories of recovery were observed and resulted from differing environmental conditions, land use histories, invasion histories and weed control intensities. Understanding trajectories and thresholds of recovery resulting from weed control efforts can assist in planning of future management through site prioritization and weed control intensities.

Effects of defoliation and habitat type on medusahead demography. Gornish, Elise. UC Davis. egornish@ucdavis.edu

The winter annual grass Taeniatherum caput-medusae (L.) Nevski, commonly known as medusahead, has invaded over 20 counties in California, significantly decreasing livestock forage production, reducing biodiversity, and promoting increased wildfire frequencies. Targeted control efforts are highly variable, and have not demonstrated long-term success. Contributing to the limited success of controlling medusahead is an absence of fundamental demographic knowledge about this invasive species. An important factor in future efforts to target both early and late phenology individuals. Specifically, our work suggests that effective eradication methods for medusahead require a series of defoliation treatments in order to target both early and late phenology individuals.
The “other” invasive Spartina in San Francisco Bay: progress towards eradication for the lesser-known species. Kerr, Drew. California Coastal Conservancy’s Invasive Spartina Project. drewker@comcast.net

The California State Coastal Conservancy’s Invasive Spartina Project (ISP) has led a regionally-coordinated effort since 2000 to eradicate non-native cordgrasses from the San Francisco Estuary. The ISP coalition of partners has reduced the infestation by 96%, from the peak of 805 net acres down to 32, through the use of integrated landscape-scale monitoring and treatment. The primary targets were hybrids between the introduced Spartina foliosa and native Spartina patens, but many are unaware of the progress ISP has made towards eradicating several other non-native Spartina species infesting endangered species habitat. While the infestation of Spartina densiflora (as well as its hybrid with S. foliosa) never reached the scale or geographic scope of S. alterniflora × foliosa, it was primarily located in a highly-urbanized portion of the Estuary with hundreds of residential and commercial properties involved. Acquiring access to every incidence of S. densiflora required years of outreach and education including enormous volunteer contributions from Friends of Corte Madera Creek, as well as threat of noxious weed enforcement action from the Marin County Agricultural Commissioner to obtain permission from the last holdouts. An adaptive Integrated Vegetation Management strategy was developed to overcome impazzys’ highly-variable efficacy on S. densiflora, as well as the persistence of the above-ground biomass that complicated subsequent treatment. Just 64m² of S. densiflora remained throughout the Estuary in 2013; the eradication trajectory is now maintained by manual removal to exhaust the seed bank.

Despite the fact that the other two species (S. patens and S. anglica) were each relegated to a single site, their treatment was confounded by a variety of factors that have delayed attaining the eradication goal. Primary amongst these challenges was the presence of endangered species in these marshes, including the hemi-parasitic plant Chlopyrophyllum molle ssp. molle, which forced herbicide applications into sub-optimal timing.

Techniques for ecological restoration of Spartina foliosa following local eradication of invasive Spartina alterniflora hybrids. Thornton, Whitney. San Francisco State University, (student paper contest). whitney@spartina.org

In 2011, the San Francisco Estuary Invasive Spartina Project (ISP) initiated a restoration program targeted at providing habitat for the endangered California clapper rail (Rallus longirostris obsoletus). A key programmatic goal of this program is to reestablish native Pacific cordgrass (Spartina foliosa) in areas in which hybrid Spartina (S. alterniflora × S. foliosa) control has been successful. Restoration attempts have been complicated by a paucity of S. foliosa populations available for transplant, altered marsh characteristics following hybrid invasion and removal, and Canada goose herbivory. Five large scale experiments conducted from 2010-2013 tested how restoration site characteristics, plant caging, and parental source of S. foliosa transplants affected establishment rates of native cordgrass. Throughout all experiments, outplanting location (e.g., geographic location, substrate, elevation) and caging were strong predictors of planting success. Establishment rate of native cordgrass was highest on uniform mudflats and wide channel banks (62%) with lower establishment rates occurring in 2nd order channels and bayfront habitat (15%). The influence of caging varied by marsh, but was most predictive of planting success at sites with nesting Canada goose (78% survivorship in caged plots, 7% survivorship in uncaged plots). Parental source was a strong predictor of planting establishment, with eight sources varying significantly in terms of survivorship, flower production, and culm density. Field performance of donor sources was not predictable from geographic region. Successful restoration of native cordgrass requires understanding site specific conditions including marsh hydrology, elevation, substrate, herbivore pressure, and donor source material.

SESSION 6: INVASIVE PLANT ECOLOGY

Nitrogen deposition and invasion: the effects of N availability and plant-soil feedback on the success of three invasive plant species. Violette, Justin. UC Riverside, (student paper contest). jviol007@ucr.edu

Nitrogen deposition is the input of biologically available forms of nitrogen into the atmosphere to the Earth’s surface. Industrial, vehicular and agricultural emissions have dramatically increased rates of N deposition worldwide, and this has been identified as a driver of biodiversity loss and invasion in multiple systems. In southern California, high levels of N deposition have been found to increase nonnative biomass, decrease native forb diversity and alter mycorrhizal fungal communities. We studied the effects of experimental N addition on native and nonnative vegetation in the Santa Monica Mountains National Recreation Area, as well as in two controlled greenhouse experiments. Our research questions were: (1) How does N addition influence nonnative performance? (2) How do nonnatives respond to soil microbial communities impacted by N addition? Our study species were Bromus diandrus, Centaurea melitensis and Hirschfeldia incana. All three of these species are native to the Mediterranean and are successful invaders throughout California. We found that N addition led to higher nonnative cover in the field, to the expense of native species. We also found that both N availability and changes to the soil microbial community influence plant performance. Finally, our results also indicate that increased N availability results in increased reproductive output in all three species. These results highlight the important role N deposition may play in invasion.

Impacts of precipitation change on Bromus tectorum and native vegetation in a sagebrush steppe ecosystem. Wade, Catherine. UC Santa Cruz, (student paper contest). cwade@ucsc.edu

Sagebrush steppe, one of the most widespread ecosytem types in the western U.S., is highly vulnerable to large-scale ecosystem conversion because of positive feedbacks between the non-native species Bromus tectorum (cheatgrass) and fire. Ubiquitous throughout the Intermountain West, B. tectorum rapidly colonizes bare ground amid native vegetation, complete an unusually early phenological cycle, and poses a serious fire hazard. Its recent spread to higher elevations is alarming and may be exacerbated by changing climatic conditions. In particular, altered precipitation regimes (amount, type, and timing) may facilitate invasion and alter ecosystem structure and function. This study used a series of experiments over three years to compare potential impacts of precipitation change on B. tectorum and native species at 2,175 m elevation. We used snow fences to increase and decrease snowpack, and irrigation to simulate increased frequency and magnitude of spring and summer precipitation. Bromus tectorum phenology was advanced in the decreased relative to the increased snowpack treatments in 2013. Snowpack treatments did not significantly affect species richness, percent cover, or B. tectorum density within any year, but interannual differences in snowpack depth yielded significant impacts on these variables, including a dramatic reduction in B. tectorum density in the driest year. Photosynthetic responses to rainfall simulations were species-specific and varied seasonally and annually. B. tectorum responses were more pronounced than those of native species in spring 2013, while the magnitude of responses was more uniform in spring 2014. In summer 2012, some native species significantly responded to increased precipitation after B. tectorum had senesced, but not in summer 2013. Overall, results indicate that B. tectorum may be more sensitive than native vegetation to precipitation change. Uncertainty about future snow and rain climate and the small window of opportunity to manage invasions necessitate close monitoring of high-elevation areas at risk of B. tectorum encroachment.

Reestablishing the competitive hierarchy in an invaded California grassland through the process of habitat restoration following the prescribed burn of Centaurea solstitialis. Mills, Jason. MS interdisciplinary Biogeography C.S.U. Chico. positivenessow@hotmail.com

Land use practices in the past several hundred years have had a dramatic effect on many of California’s ecosystems, resulting in large scale ecological consequences. As a result, native grasslands have become one of the state’s most threatened ecosystems. Close to 90% of the plants listed on California’s Invasive Plant List are grassland species. However, unmanaged grasslands. Native species account for less than 1%
of composition of most California's grasslands today. Centaurea solstitialis (yellow star thistle, Asteraceae) was introduced to California in the mid 1800's and has spread widely into exposed grasslands. Centaurea solstitialis is highly invasive and is currently the most widely distributed noxious weed in California. Prescribed burns have been demonstrated to be an effective management tool for reducing the density and seed bank of C. solstitialis by as much as 99%; however, further research has shown that without continued management, C. solstitialis will reestablish in treated areas. I hypothesize that planting native grassland species will suppress the reestablishment of C. solstitialis following a burn. Seeds of the perennial bunch grasses, Stipa pulcra, Bromus carinatus, and Elymus glaucus, along with Grindelia camporum, and Madia elegans were collected within the watershed of Big Chico Creek in the summer of 2012 and propagated in a greenhouse. Two separate fields of C. solstitialis along Big Chico Creek were burned in the fall of 2012. Three separate 4m x 7m blocks were established in each of the fields. Each species was planted in separate 1m² plots and replicated 4 times in each of the blocks using systematic randomization. Planting of 1,152 Madia elegans was completed in the winter of 2012-13. Species composition and growth of each treatment will be monitored once a month for one year. The use of systematic randomization plants the most common invasive (5-9 species per site) and native (7-47 species per site) species in California (serpentine grassland, coastal sage scrub), Chile (sercophyll woodland), South Africa (acid-sands fynbos, Renosterveld), Spain (coastal grassland), and Western Australia (banksia woodland, coastal banksia woodland). Traits included leaf N and P content, LMA, photosynthetic capacity, water use efficiency, photosynthetic nutrient use efficiency, root depth, specific root length, nutrient acquisition strategy, height, seed mass, and life form. Traits differed more strongly across the eight sites than between native and invasive species. Despite differences in LMA, root depth, and leaf form, native and invasive species were similar with respect to rates of carbon assimilation and resource use efficiency. Overall, our data suggest that invasive species are functionally similar to native species in MCEs although there is significant variability across regions and across sites within regions resulting from different environmental pressures and land-use history.

Are native and invasive species functionally similar in low-resource ecosystems? A functional trait comparison across five Mediterranean-climate ecosystems. Funk, Jennifer. Chapman University. jlfunk@chapman.edu

It is difficult to identify a suite of general traits explaining invasiveness because traits of invaders depend on characteristics of the invaded habitats. Specifically, the mechanisms allowing exotic species to invade low-resource ecosystems are likely to be very different from those allowing species to invade high-resource ecosystems. Invasive species tend to be located on the fast-return end of the leaf economic spectrum (LES), displaying low leaf mass per unit area (LMA), high rates of carbon assimilation, high leaf nitrogen (N) content, and short leaf lifespan while native species occupy the slow-return end of the LES. However, it is unclear if these functional differences exist in low-resource ecosystems where theory suggests plant species should benefit from traits characterized by the slow-return end of the LES. In this study, we measured functional traits from native and invasive species occurring in eight vegetation communities across the five Mediterranean-climate ecosystems (MCEs), where plant productivity is limited by low water availability in summer. We collected functional trait data from the most common invasive (5-9 species per site) and native (7-47 species per site) species in California (serpentine grassland, coastal sage scrub), Chile (sercophyll woodland), South Africa (acid-sands fynbos, Renosterveld), Spain (coastal grassland), and Western Australia (banksia woodland, coastal banksia woodland). Traits included leaf N and P content, LMA, photosynthetic capacity, water use efficiency, photosynthetic nutrient use efficiency, root depth, specific root length, nutrient acquisition strategy, height, seed mass, and life form. Traits differed more strongly across the eight sites than between native and invasive species. Despite differences in LMA, root depth, and leaf form, native and invasive species were similar with respect to rates of carbon assimilation and resource use efficiency. Overall, our data suggest that invasive species are functionally similar to native species in MCEs although there is significant variability across regions and across sites within regions resulting from different environmental pressures and land-use history.

FRIDAY, OCTOBER 10

SESSION 2: CREATIVE SOLUTIONS

High stakes for California rangelands – the battle to stem the tide of invasive plants must be a collaborative effort. Koopmann, Tim. Koopmann Ranch and California Cattlemens Association. koopmannranch@gmail.com

The livestock grazing community is losing the “war on weeds”. The number and ground cover acreage of noxious, invasive plant species that reduce grazing value and constitute a fine fuel fire loading hazard are increasing at an alarming rate. Once feared as the bane of the rangeland management community, yellow star thistle (Centaurea solstitialis) may now be considered the least problematic of the many toxic weed species impacting California rangelands. The spread of Barbed Goatgrass (Aegilops triuncialis), and medusahead (Taeniatherum caput-medusae) are but two of the most devastating invaders and the grazing community has limited tools to successfully combat these invasions. The 38 million acres of California classified as rangeland represent a major land use component of the state. Rangelands are home to the majority of terrestrial special status species, provide much coveted view shed and open space for our urban population, play an integral role in the collection, movement, storage, and overall quality of surface water resources and account for significant economic value to the agricultural economy. This valuable land component which provides so much benefit to the people of the state is highly invaded by as much as 99%; however, further research has shown that without continued management, C. solstitialis will reestablish in treated areas. I hypothesize that planting native grassland species will suppress the reestablishment of C. solstitialis following a burn. Seeds of the perennial bunch grasses, Stipa pulcra, Bromus carinatus, and Elymus glaucus, along with Grindelia camporum, and Madia elegans were collected within the watershed of Big Chico Creek in the summer of 2012 and propagated in a greenhouse. Two separate fields of C. solstitialis along Big Chico Creek were burned in the fall of 2012. Three separate 4m x 7m blocks were established in each of the fields. Each species was planted in separate 1m² plots and replicated 4 times in each of the blocks using systematic randomization. Planting of 1,152 Madia elegans was completed in the winter of 2012-13. Species composition and growth of each treatment will be monitored once a month for one year. The use of systematic randomization plants the most common invasive (5-9 species per site) and native (7-47 species per site) species in California (serpentine grassland, coastal sage scrub), Chile (sercophyll woodland), South Africa (acid-sands fynbos, Renosterveld), Spain (coastal grassland), and Western Australia (banksia woodland, coastal banksia woodland). Traits included leaf N and P content, LMA, photosynthetic capacity, water use efficiency, photosynthetic nutrient use efficiency, root depth, specific root length, nutrient acquisition strategy, height, seed mass, and life form. Traits differed more strongly across the eight sites than between native and invasive species. Despite differences in LMA, root depth, and leaf form, native and invasive species were similar with respect to rates of carbon assimilation and resource use efficiency. Overall, our data suggest that invasive species are functionally similar to native species in MCEs although there is significant variability across regions and across sites within regions resulting from different environmental pressures and land-use history.

Are native and invasive species functionally similar in low-resource ecosystems? A functional trait comparison across five Mediterranean-climate ecosystems. Funk, Jennifer. Chapman University. jlfunk@chapman.edu

It is difficult to identify a suite of general traits explaining invasiveness because traits of invaders depend on characteristics of the invaded habitats. Specifically, the mechanisms allowing exotic species to invade low-resource ecosystems are likely to be very different from those allowing species to invade high-resource ecosystems. Invasive species tend to be located on the fast-return end of the leaf economic spectrum (LES), displaying low leaf mass per unit area (LMA), high rates of carbon assimilation, high leaf nitrogen (N) content, and short leaf lifespan while native species occupy the slow-return end of the LES. However, it is unclear if these functional differences exist in low-resource ecosystems where theory suggests plant species should benefit from traits characterized by the slow-return end of the LES. In this study, we measured functional traits from native and invasive species occurring in eight vegetation communities across the five Mediterranean-climate ecosystems (MCEs), where plant productivity is limited by low water availability in summer. We collected functional trait data from the most common invasive (5-9 species per site) and native (7-47 species per site) species in California (serpentine grassland, coastal sage scrub), Chile (sercophyll woodland), South Africa (acid-sands fynbos, Renosterveld), Spain (coastal grassland), and Western Australia (banksia woodland, coastal banksia woodland). Traits included leaf N and P content, LMA, photosynthetic capacity, water use efficiency, photosynthetic nutrient use efficiency, root depth, specific root length, nutrient acquisition strategy, height, seed mass, and life form. Traits differed more strongly across the eight sites than between native and invasive species. Despite differences in LMA, root depth, and leaf form, native and invasive species were similar with respect to rates of carbon assimilation and resource use efficiency. Overall, our data suggest that invasive species are functionally similar to native species in MCEs although there is significant variability across regions and across sites within regions resulting from different environmental pressures and land-use history.

The livestock grazing community should assume a leadership role in the development of collaborative tools to reduce the roadblocks to successful rangeland weed management. Collaborative team members in addition to agricultural producers should include regulatory agencies, public land ownerships, local Resource Conservation Districts, UC Cooperative Extension, and interested public members. One promising collaborative tool which deserves further attention is the ongoing work of the California Rangeland Conservation Coalition (CRCC), which has brought together agencies, NGOs and producer groups to develop projects that benefit all interests.

Hot topics in biocontrol. Pitcairn, Mike. California Department of Agriculture. mike.pitcairn@cdfa.ca.gov

Several exotic weeds have been the target of weed biological control researchers for several years. A list of weeds with active biocontrol research will be presented. These include tall whitetop (Lepidium latifolium), hoary cress (Lepidium draba), dyer’s woad (Isatis tinctoria), Russian knawpweed (Acr ropentum repens), Scotch broom (Cytisus scoparius), giant reed (Arundo donax), water hyacinth (Eichhornia crassipes), Dalmatian toadflax (Linaria genistifolia) and rush skeletonweed (Chondrilla juncea). Potential biological control agents will be identified and progress on their development for use in the field will be presented.

The power of cross-border collaboration. Pirosko, Carri. Oregon Department of Agriculture. cpirosko@oda.state.or.us

The power of cross-border collaboration is being demonstrated in the State of Jefferson. California and Oregon border partners see opportunities in working together despite being separated by a state line, differing state laws, and weed priority lists. With the loss of the California Weed Biological Control Program, cross-border collaboration has become even more crucial on this front. Partners have formed an I-5 Working Group that meets annually to discuss cross-border invasive and noxious weed issues. Representatives attend WMA meetings in both states keeping the communication flowing. Electronic communications, from Facebook to blogs, are shared weekly keeping EDRR timely. Cal-IPC
CAREERS IN INVASIVE PLANTS AND RESTORATION

Panelists to be announced.

What are the possible directions a career in invasive plants and restoration can take? What skills do you need to get a job and advance in the field? Our panel of invasive plant managers will discuss their experiences working for government agencies, non-profits, consulting firms, and universities. Attendees will be able to ask questions. This panel will be followed by a student lunch with the panelists (free for students).

PRIORITY PARTNERS

Leaders: Gina Darin, CADWR, and Giselle Block, USFWS

The discussion group will begin with a short presentation of the major phases of prioritization and a showcase of tools available in California with a live demonstration of Online WHIPPET. (Try it for yourself at whippet.cal-ipc.org and bring your questions to the discussion group. Sign up with a free Calflora account at whippet.cal-ipc.org and bring your questions to the discussion group.) From there, we will discuss prioritization issues and challenges.

WORKING ON THE WILDLAND/URBAN INTERFACE

Leader: Susan Mason, Friends of Bidwell Park, Chico

Organizations and volunteers working in open spaces that adjoin urban areas have some unique challenges and opportunities. On the down side, it may vastly increase the number of invasive horticultural species in the wildland area and restrict your ability to use the most cost-effective treatments. On the plus side, it could increase the availability of volunteer labor or provide easier access for treatment and debris removal. How does working on the WUI affect your decision about which weeds to try to control, choices of treatment methods, and timing of work? What works for communicating with dozens to hundreds of adjacent landowner and/or public agencies? In this session, you will be able to discuss your problems and share solutions with others who are working on the wildland/urban interface.

WORKING WITH VOLUNTEERS

Leaders: Susan Schwartz, Friends of Five Creeks, and John Parodi, Point Blue Conservation Science

What can you do to attract volunteers, keep them coming back, and use them effectively in the many roles they can fill? Discuss tips, techniques, and practical problems in a session informed by a pre-session survey and sparked with brief presentations by experienced leaders.

R ivegetation and competitive planting

Leader: Tim Buonaccorsi, RECON, San Diego

What are the factors that influence the long term efficacy of competitive planting? What are the benefits of and drawbacks of active vs. passive restoration? In a multi-step approach to native establishment, does the order of events change the outcome? Bring your own problems and solutions and examples of what has worked long-term for your projects.

SESSION 9: MAPPING AND MONITORING

Update - early detection rapid response pilot project in California State Parks.

Robison, Ramona. California Department of Parks and Recreation.

The California State Parks (Parks) Natural Resources Program spends a significant amount of its yearly budget on invasive plant management. Most of the effort goes towards management of known weed infestations. Monitoring is also in place using a modified version of TNC's Weed Information Management System (WIMS), which focuses on 30 species that are already widespread. In order to become more pro-active and identify new infestations before they become widespread, in 2013 Parks implemented a pilot program for early detection and rapid response (EDRR) in the Santa Cruz District’s Mountain Sector and Orange Coast District Parks. In 2014 we added some San Diego Coast, North Coast Redwoods and Sierra District Parks to the pilot program. Methods developed included selection of an EDRR target list, preparation of training materials for field staff including: a GPS data collection and management system, maps and GIS layers of EDRR target search areas. We also added cost and budget estimates to extend the protocol to the entire Parks system. The project is in collaboration with the Resource Conservation District of Santa Cruz County (RCD-SCC) and California Invasive Plant Council (Cal-IPC).

Modeling habitat suitability for velvetgrass (Holcus lanatus) in Sequoia and Kings Canyon National Parks, California. Degenstein, Erin. Humboldt State University (student paper contest). erindegenstein@gmail.com

It is important for land managers to understand where to look and which ecosystems are threatened by invasive species in order to help restore and maintain natural ecosystems. The need for targeted early detection surveys is increased with limited personnel resources and vast areas of rugged terrain. Habitat suitability modeling is a spatial analysis tool that provides managers and researchers alike an understanding of the potential distribution and spread of invasive species. Velvetgrass (Holcus lanatus) is a non-native perennial grass that aggressively invades wet meadows in Kings Canyon and Sequoia National Parks in California. This study uses 1,223 recorded presence locations and Maximum entropy (Maxent) modeling to develop habitat suitability maps based on terrain and water features at a 10 meter resolution. Results will be discussed in the context of the model's ability to predict suitable habitat based on quantitative measures (AUC) and model applicability throughout the Sierra Nevada.

Understanding what controls the spread of invasive species is essential to identify areas susceptible to invasion so they can be targeted for early detection surveys and management. Most species distribution models focus only on abiotic factors and ignore dispersal; however, dispersal vectors may be key in promoting or restricting invasive spread. Here we test whether dispersal factors, in addition to abiotic factors, are important in predicting the spread of the noxious rangeland weed medusahead (Elymus caput-medusae) in California. We hypothesize that incorporating dispersal will improve model fit and alter predictions of where medusahead is likely to invade. Using logistic regression, we first fit an abiotic model including annual precipitation, annual temperature, soil texture, slope, and aspect. We then fit another model adding two dispersal parameters: road density and cattle density.
medusahead seeds have long barbed awns and can attach to animals including cattle. We compared model fit (AIC) and predictive power (AUC), and extrapolated both models to all of California to compare invasion predictions. In the abiotic model, precipitation, temperature, soil texture, and slope were important for medusahead distribution. Adding dispersal parameters increased model fit; cattle density was positively associated with medusahead presence and road density exhibited a hump-shaped curve. However, adding dispersal parameters did not increase model predictive power. Both models predicted that wetter, hillier regions in Northern California (the North Coast and Sierra Nevada) are likely to be invaded, whereas invasion is unlikely in hotter, drier regions of Southern California (the Central Valley and desert). The models also highlighted some areas in the Central and South Coast with high habitat suitability. Overall, these results suggest that limiting dispersal vectors may help reduce the spread of this invasive grass. These methods can easily be applied to other invaders and regions to assess invasion risk and aid prevention and management.

The development and refinement of a Plant Risk Evaluation (PRE) tool for assessing the invasive potential of ornamental plants. Conser, Christina. UC Davis. cconsers@ucdavis.edu

Weed Risk Assessment (WRA) methods for screening potential new plant introductions have evolved rapidly in the last two decades. To be accepted as a tool for the horticultural industry to evaluate new plant introductions and current plant inventories, it is critical that a pre-screening tool can accurately predict invasive potential of a species, but also accurately predict non-invasiveness without falsely categorizing them as invasive. In this study, we developed a new abbreviated Plant Risk Evaluation (PRE) tool specific for plants originating from the ornamental industry. The 19 questions in the final PRE tool were narrowed down from 56 original questions based on a combination of other WRAs. For the 56 questions, we evaluated 21 known invasive plants and 14 known non-invasive ornamental species. After statistically comparing the predictability of each question and the frequency the question could be answered for both invasive and non-invasive species, we eliminated questions that provided no predictable power; were irrelevant in our current model, or could not be answered reliably at a high enough percentage. We also combined many similar questions. The final 19 remaining PRE questions were further tested for accuracy using 57 additional known invasive plants and 37 known non-invasive ornamental species. The resulting evaluation demonstrated that when “Evaluate Further” classifications were not included, the accuracy of the model was 100% for both predicting invasiveness and non-invasiveness. When “Evaluate Further” classifications were included as either failed as positive or false negative, the model was still 93% accurate in predicting invasiveness and 97% accurate in predicting non-invasiveness, with an overall accuracy of 95%. We conclude that the PRE tool should not only provide plant propagators and growers with a method to accurately screen their current stock and potential new introductions, but also increase the probability of the tool being accepted for use by the industry as the basis for a nursery certification program.

Session 10: OUTREACH AND MANAGEMENT

Mid Klamath Watershed Council: a collaborative approach to invasive weeds management. Chapple, Tanya. Mid Klamath Watershed Council. tanya@mkwc.org

The Mid Klamath Watershed Council (MKWC) has actively been managing high priority invasive weeds in collaboration with federal, state, and Tribal partners and with the support of the local community. MKWC utilizes early detection/rapid response, watershed level planning and collaboration, as well as public involvement and education, to effectively manage invasive weeds present in the mid-Klamath. Since 2006, MKWC has coordinated and hosted annual meetings with federal, state, and county agencies, local tribes, and other non-profit groups to coordinate invasive weed activities along the mid-Klamath River. These meetings have resulted in improved coverage, an effective early detection/rapid response approach to treatment of invasive species sites, and improved collaboration and communication between all partners. In addition to extensive work managing priority invasive weeds along the river corridor and in the mid-Klamath communities, MKWC is involved with inventory and management of invasive plants in the nearby wilderness areas. In partnership with the Six Rivers, Klamath, Rogue River-Siskiyou, Shasta-Trinity National Forests and supported by the National Forest Foundation, MKWC has contributed to the inventory of invasive plants in the Siskiyou, Red Buttes, Trinity Alps, Marble Mountain and Castle Crags Wilderness Areas. MKWC has recently been nationally recognized for its exceptional work as a partner with the Forest Service to manage invasive species threatening aquatic and terrestrial areas of national forests throughout the middle section of the Klamath River watershed.

Addressing lessons learned from the NRCS Rangeland CEAP: establishing peer-learning networks for effective, low-cost medusahead control within the ranching community. Brownsey, Philip, Sierra Foothill Research and Extension Center. pbrownsey@ucanr.edu

California includes 22 million acres of privately owned rangelands, much of which is predominately used for livestock production. Collaboration with livestock producers is critical for effective management of invasive plants in rangelands at the landscape scale. However, the NRCS Rangeland Conservation Effects Assessment Project found that over 80% of rangeland weed management efforts failed over the long-term for three central reasons including: (1) lack of simple weed management decision-support systems that address site-specific environmental conditions; (2) lack of low-cost tools for weed management; and (3) lack of peer-learning networks to promote development and dissemination of on-the-ground knowledge (2011). Over the past several years, efforts have been made to overcome these shortcomings with respect to managing medusahead (Elymus caput-medusae L.), an exotic annual grass, on rangelands in California. Medusahead in particular is known to cause serious ecological effects on invaded sites, and also has severe economic impacts on livestock producers who are dependent on these rangelands. Currently, medusahead infests extensive areas of California’s annual grasslands and is rapidly expanding both in California and in the intermountain west. The goal of this project is to deploy a holistic education and technology transfer program for sustainable agriculture extension, education and training of agents in California and Oregon that addresses the central ecological, economic and sociological barriers limiting existing medusahead management programs. This program is based on research that identifies effective, low-cost medusahead management methods. In this talk we will briefly discuss the ways that the shortcomings identified in the NRCS CEAP have been addressed and then discuss our progress towards developing peer-learning networks to help disseminate practical knowledge on low-cost medusahead control that can be implemented on private lands to achieve landscape scale effects.

Restoring lower Redwood Creek - collaborative invasive plant management. Baxter, Tanya. Golden National Recreation Area. tanya_baxter@nps.gov

Four phases of rewilding construction activities to the lower Redwood Creek led to significant changes to the wetland and riparian plant composition. To protect spawning coho salmon and steelhead trout all 30 of the selected target non-native plant species were removed manually, without the use of herbicide by Golden Gate National Parks Conservancy community volunteer program efforts and hired restoration contractors. Both pre-existing non-native populations, such as Cape-ivy (Delairea odorata) and panic veldt grass (Ehrharta erecta) were removed, as well as new populations continually recruited from upstream sites of early detection species. Additionally, over 70,000 locally sourced native plant propagules were collected, grown within the watershed nursery and planted during the fall and winter months from 2010-2012. In 2014 the final year of annual vegetation community change monitoring, results are presented on targeted non-native plants that demonstrated absolute changes in frequency of more than 6.5% since 2009. Refinement of the monitoring based on the first five years results will provide guidance for plant species to manage and monitor, for the next 15 years (until 2029), eradication and control of a multitude of invasive species while continuing to face ongoing challenges in a unique landscape. The CHP program uses an adaptive three-pronged approach to address threats at different scales: remote backcountry treatment, intensive roadside-based treatment, and education/outreach focused on the urban-wildlife interface. Serving as a retrospective at this ten-year milestone, the talk will discuss the evolution of the program and share the accomplishments and adaptive management decisions required to run a world class invasive plant program.
Multi-benefit weed control: the San Joaquin River invasive species management and jobs creation project. Meadows, Trever. River Partners. tmoadows@riverpartners.org

In 2010, River Partners, the San Joaquin River Parkway and Conservation Trust, and The Nature Conservancy received funding from the Bureau of Reclamation to conduct broad-scale of invasive species monitoring and management in the San Joaquin Valley in support of the San Joaquin River Restoration Program. Initial project phases focused on planning, permits, and negotiations with landowners for site access. Mapping of invasive species began in 2011, and >3000 acres of the SJRRP Program Area have been mapped to date, including the San Luis and Merced NWRs, Great Valley Grasslands State Park, Hatfield State Recreation Area, Riverbottom Park, Scout Island, Sycamore Island, Spano River West, Van Buren Unit and five private inholdings along the San Joaquin River. Focal invasives have included perennial pepperweed (Lepidium latifolium), giant reed (Arundo donax), red sesbania (Sesbania punicea), edible fig (Ficus carica), salt cedar (Tamarix sp.), Himalayan blackberry (Rubus armeniacus), yellow starthistle (Centaurea solstitialis), and tree tobacco (Nicotiana glauca). Treatments began in 2013 and will continue through 2014 and beyond. Site prioritization was required due to factors such as contract labor availability, site access, and optimal timing of treatments including biomass removal, herbicide application and retreatment as required. In partnership with university researchers, additional techniques (e.g., solarization) are also being evaluated. To date, over 500 acres of invasives have been treated on >3000 acres of L. latifolium, 120 acres of S. punicea, 12 acres of A. donax, and smaller extents of other species. In addition to funding permanent restoration staff and seasonal interns, the project has provided temporary positions for ~50 California Conservation Corps members, 150 Fresno Local Conservation Corps members, and 60 agriculture labor crewmembers, all of whom have received job training related to riparian restoration and invasive species control. In addition, outreach activities have included presentations, publications, newspaper articles, and meetings with landowners and managers.

Session 11. WEEDS AS WATER WASTERS

Water use of native vs non-native trees in wild and urban ecosystems: moving from mythology to a trait-based ecohydrology. Sack, Lawren. UC Los Angeles. lawrensack@gmail.com

Numerous recent studies have shown strong differences among species in water use at leaf and whole-plant scales. These differences can translate into major differences in landscape-scale water use and thus potentially contribute significantly to the water cycle and biodiversity of catchments and municipalities. However, a lack of clear concepts and the logistical challenges of current methods have led until recently to a severe paucity of data or clear understanding of the drivers of these differences in water use, how much they can be assessed based on studies of individual or few plants and to what degree we can trust the commonly held beliefs, that alien plants use more water than natives or that drought tolerant plants use less water than drought sensitive plants. These issues and the need for clear understanding become more pressing as water becomes increasingly limited, and to further motivate (and evaluate) the conservation and restoration of native plants in urban and wild ecosystems. Recent work will be reviewed from collaborative projects from our group and others focused on the relative water use of different tree species, emphasizing what is known especially about native trees in natural and urban ecosystems in Los Angeles and Hawaii. Further, I will describe the approaches currently in development for estimating from traits not only leaf and tree-scale water use but also the services provided by trees to weigh against this cost, to provide information toward more sustainable management of species and water in a wide range of ecosystems.

Aquatic weeds: water waste or water wise? Madsen, John. US Davis. jmadsen@ucdavis.edu

Native aquatic plant communities provide useful ecosystem services, structure the aquatic habitat for fish and macroinvertebrates, produce food for waterfowl and other wildlife, and contribute to ecosystem functions and processes. An overabundance of aquatic plants, however, can have deleterious effects on water resources and the ability of society to utilize them. Most commonly, this is due to the unrestricted growth of invasive aquatic plant species. Abundant growth of some species, for instance, greatly increases loss of water through evapotranspiration relative to a standing pool. Dense growths of aquatic plants reduce the ability of ditches and channels to carry water through displacement, reduced flow rates, and increased hydraulic roughness. Dense plant growth will increase the probability, amplitude, and duration of flood events, resulting in water loss. When plant mats drift due to senescence or become unrooted, the mat may block water intakes, pump stations, and power generation turbines, resulting in reduced water transportation. While moderate growth of aquatic plants can contribute to conservation of water resources, the excessive growth caused by invasive plants may lead to water loss or waste. Fortunately, management of aquatic weed growths may restore the functionality of the water resource, reduce water losses, and restore a desirable native plant community.

All plants lose water as a byproduct of photosynthesis – when they open small pores in their leaves to let CO₂ in, water molecules gush uncontrollably out of the pores in a process that is called transpiration. The lost water is immediately replaced molecule by molecule with water that the plant literally pulls out of the soil. Over time and across large areas the process of transpiration moves enormous quantities of water from the soil to the atmosphere. There are many plant characteristics that control the amount of water that is transpired. Short-lived annual species use less water than long-lived annual or perennial species. Some species use water extravagantly while others are water savers. Deeply rooted plants have access to a greater volume of soil and hence more water. Soil properties and geologic formations determine the volume of water that plant roots can access. Climate determines the timing and rates of both the precipitation that recharges soil moisture as well as losses due to transpiration. Together, all of these factors affect surface flows and ground water recharge through their effect on soil moisture.

I will use the context described above to show how the invasion of annual grassland and blue oak woodland by yellow starthistle imposes a permanent drought in the invaded areas – essentially stopping ground water recharge and sub-surface flows to streams. I’ll also provide a rough estimate of the amount and value of the water lost annually from the Sacramento Valley.
Precipitation and nitrogen manipulations alter post-fire recovery of coastal sage scrub. Parker, Scot. UC Irvine. sparker@uci.edu

Climate models project increased aridity and precipitation variability in southern California over the next century, which may accelerate invasion by exotic Eurasian grasses into coastal sage scrub ecosystems. Urban areas have expanded into regions historically populated by coastal sage scrub, creating opportunities for invasive species to establish and proliferate. Both factors individually favor invasive grasses, and in combination their future effect could be dramatic.

GENERAL POSTERS

Sunrise Powerlink Adaptive Weed Control Strategy: yellow star-thistle eradication at Eichenlaub Ranch. Atik, Raquel. Recon Environmental. ratik@reconenvironmental.com

San Diego Gas & Electric (SDG&E), in consultation with RECON Environmental (RECON) developed an Adaptive Weed Control Strategy (AWCS) for the Sunrise Powerlink Energy Project that takes a holistic watershed approach by focusing on enhancement of large, biologically significant parcels of land. The AWCS targets the limits of entire populations of weed species within large contiguous parcels. One of the target areas is Eichenlaub Ranch, a 195-acre parcel in eastern San Diego County. At the time of initial weed mapping for the Project, Eichenlaub Ranch had the largest population of yellow star-thistle (Centaurea solstitialis) within San Diego County. However, as of the fall of 2014, yellow star-thistle, a Cal-IPC high ranked species, has been completely eradicated from this site. This poster presents the steps that were taken to eradicate this species, including initial mapping of the species, the application of pre-emergent herbicide, and follow-up maintenance visits where spot-spraying of herbicide occurred. This poster also includes maps showing the yearly reduction in population size of the species.

Invasive aquatic weeds: implications for mosquito and vector management activities. Blair, Charles. Mosquito and Vector Management District of Santa Barbara County. blairce@verizon.net

Healthy natural wetlands ARE FAR LESS LIKELY to be breeding areas for disease-carrying mosquitoes than degraded ones. Degradation of these bodies of water by invasive aquatic weeds and other influences can result in their being potential habitat for mosquitoes that can carry the West Nile Virus, encephalitis, and other diseases. Control of these invasive plants can be an important part of the Integrated Weed/Pest Management efforts of both Weed Management Areas and Mosquito and Vector Control Agencies. This poster focuses on continuing problems with control of Water Evening-primerose, Ludwigia spp. Successes in on-going control of Smooth Cordgrass, Spartina spp., S. densiflora x foliosa, in the San Francisco Estuary will be shown. Presentations on the importance of Smooth Cordgrass in San Francisco Bay have been made at recent statewide Cal-IPC and Mosquito and Vector Control Conferences. Demonstration of these relationships can enhance both agency and public awareness of their importance.

Small-scale grass control experiment in the Woolly-Star Preserve Area (WSPA), San Bernardino, CA

Brown, Lauren. Leidos, Inc. brownla@leidos.com

Non-native grasses are associated with reduced habitat suitability for federally-listed slender-horned evening-primrose (Oenothera lepiscata), Santa Ana River woolly-star (Eriogonum densifolium ssp. sanctorum), and San Bernardino kangaroo rat (Dipodomys merriami parvus) in the Santa Ana River Woolly Star Preserve (WSPA), San Bernardino, California. Small-scale experiments were developed to identify the most effective herbicide and pre-application treatment for reducing non-native grasses, particularly dominant species such as cheat grass (Bromus tectorum) and rattail fescue (Festuca myuros), in mature Riversidean Alluvial Fan Sage Scrub (RAFSS) habitat within the preserve. Replicate grids of small plots (2 square meters), which each included several treatments and a control, were established at six locations between 2009 and 2011. The herbicide treatments included use of post-emergence, non-selective RoundUp® and AquaMaster® (active ingredient Glyphosate), and grass-specific Envy® (Clemidom), Fusilade® (Fluazipof P_butyli), and Grass Getter® (Sethoxydim). Different pre-application approaches (early-season watering, and raking for thatch removal and soil scarification) also were tested. The effects of the treatments on non-native grass species and forbs were monitored before and for one to four years after treatment depending on the herbicide. As expected, the non-selective herbicides killed all plants, but forbs reestablished quicker after treatment with AquaMaster® than RoundUp®. The grass-specific herbicides were effective at not reducing forbs, but differed in their control of the dominant grasses. Envy® was more effective at control of both cheat grass and rattail fescue than Grass Getter®. Fusilade® was effective at control of cheat grass but not rattail fescue. Removing thatch, soil scarification, and early season watering had only minor effects. It was noted that annual forb cover and diversity appeared to be greater when natural precipitation occurred earlier in the rainy season.

Prioritizing invasive plants on military bases. Brusatt, Elizobeth. Cal-IPC. edbrusati@cal-ipc.org

Cal-IPC is working with six military installations to make their invasive plant management more strategic and effective. The military manages a large amount of land and its natural resource management must support the military mission while maintaining habitat for sensitive species. This is a one-year pilot project, funded by the Department of Defense’s Legacy Program, to develop a process that can be applied to additional installations in the future. The project includes analyzing invasive plant management on the bases as well as connecting the bases to regional partners for the purpose of developing projects on lands near the bases. The six installations include all four branches of the military: Camp Pendleton (Marines), Fort Hunter Liggett (Army Reserve), Beale Air Force Base, Vandenberg Air Force Base, Fallbrook Naval Weapons Station, and Remote Training Site Warner Springs (Navy). These installations vary widely in size, habitat, current invasive plant management, Some have extensive programs already while others have limited programs and little connection to regional partners. Each base contains habitat for endangered or threatened species as well as rare plants. We reviewed their current invasive plant management plans, met with each base individually, and then convened a meeting with regional partners for each base. We used CalWeedMapper to examine invasive plants around each base and develop an initial list of eradication targets. Surveillance, and control targets. We will also develop surveillance guides with photos to help early detection efforts on and around the bases. This poster will present results on the priority species identified for each base.

The Pepperwood Conservation Grazing Pilot Project: managing for complexity in our coastal California grasslands. Gillogly, Michael. Pepperwood Preserve. mgillogly@pepperwoodpreserve.org

The fact that Coastal California’s grasslands are composed of a diverse mosaic of annual and perennial grass species presents a range of management
Nevada County, California Department of Fish and Wildlife. jhalderman@truckeeriverwc.org

During the summer 2014, the Truckee River Watershed Council Weed Warriors worked collaboratively with Nevada County, California Department of Fish and Game, US Forest Service, private and public landowners, to treat non-native invasive plant species (NNIPs), along a section of the Middle Truckee River. Approximately 30,000 NNIPs individuals were treated as part of this effort. Through coordination and combined funding and staff, we treated several NNIPs on approximately 260 acres. NNIPs within the 260 acres were treated during two to three passes between June and July 2014. NNIPs treated include State Listed A & B species musk thistle, perennial pepperweed, hoary cress, spotted knapweed, Russian knapweed; State Listed C rated species bull thistle, Klamath weed; and locally targeted invasive species including teasel and white sweet clover. Mechanical and chemical treatments were used depending on known effectiveness by species. As a result of the collaborative effort, we were able to treat all the floodplain on both sides of the Middle Truckee River corridor from Highway 267 bipass to Hirschdale (approximately 6 miles), and three select areas within the watershed feeding into the Truckee River via the Little Truckee River, one area East of Hirschdale, and another area near Martis Creek. We believe this collaborative effort has enabled us to make a substantial impact on the numbers of NNIPs and seed dispersal in this area of the Middle Truckee River. Funds have been secured to continue this effort in 2015.

Cabbage tree (Cordyline australis) distribution, management and control in California State Parks

Cabbage tree (Cordyline australis) has begun to invade the understory of the bishop pine forest and riparian zones found within Salt Point State Park, Sonoma County, CA. It appears to be radiating out from historical plantings although much of its distribution appears to be random (i.e. isolated drainages). This distribution has led State Parks staff to conclude that birds are, at least in part, responsible for the spread of this plant. Since this plant has a limited root system and seasonal dormancy at the moment, Parks staff have prioritized its removal. Removal began in 2013 and to date three chemical treatments have been tried with varying degrees of success. Foliar application has been used on small plants (<2 feet tall) while the EZ-Ject lance has been used on mature plants. Foliar spraying was met with modest success as the leaves shed moisture very effectively. Cut stump treatments were effective on the base of the plant but the stalks were able to re-sprout vigorously. One stalk which was approximately 8 feet long re-sprouted into 6 individuals. Treatment with the EZ-Ject lance appears to be most effective. It delivers a precise dose of herbicide into the trunk of the plant, and no re-sprouting has occurred. Treatment with the EZ-Ject lance began in December 2013 and will continue into the fall to help determine the most effective timing of this treatment. We are interested in more information on the distribution of this plant in natural areas throughout California since it is widely available in the horticultural trade.

Infering the complex origins of horticultural invasives: French broom in California. Kleist, Annabelle. UC Davis. akkleist@ucdavis.edu

Investigating the origins of invasive populations provides insight into the evolutionary and anthropogenic factors underlying invasions, and can also provide important information for management decisions. Invasive species introduced for horticultural purposes often have complex origins typified by multiple introductions of species, cultivars, and genotypes, and interspecific and intraspecific hybridizations in introduced ranges. We infered the origins of the invasive French broom complex in California by characterizing the genetic diversity and population structure of invasive and horticultural brooms and of Genista monspessulana from its native Mediterranean range using 12 nuclear microsatellite markers. Overall, no significant differences in allelic richness, inbreeding, or genetic structure were observed between the invaded and native ranges, but there were differences between populations within ranges. Bayesian analyses revealed three genetic clusters in the French broom complex. Nearly all native G. monspessulana assigned highly to a single cluster. Some invasives assigned to a group containing G. canariensis, G. stenopetala, an ornamental sweet broom, and the remaining invasives assigned to a group containing G. monspessulana from Sardinia and Corsica. Admixture between the two groups containing invasives was detected. An Approximate Bayesian Computation analysis supported the hypothesis that some invasive French broom is derived from an unsampled population branching from ornamental sweet broom. A combination of factors, including multiple introductions, escapes from cultivation, and inter-taxon hybridizations, likely contribute to the invasive success of French broom in California and have important implications for management, particularly biological control.

Eradication strategy of russian wheatgrass (Elymus farctus) population found in the Guadalupe-Nipomo Dunes. San Luis Obispo County. LaGrille, Nancy. California State Parks and Recreation. nlagrrle@parks.ca.gov

California State Park and Recreation (CDPR) first documented the presence of Russian wheatgrass (Elymus farctus) in the Guadalupe-Nipomo Dunes in 2003. In 2010 an eradication strategy was initiated based on the formulated success of treating European beachgrass (Amelampophila arenaria). The spray formula is an herbicide mixture of glyphosate (2%) and imazapyr (1%). Several treatments are required to be fully successful. Maps on the poser show the extent of the infestation and the extent of treatment efforts to date.

Terrestrial riparian arundo (Arundo donax) and floating aquatic water hyacinth (Eichhornia crassipes) are widespread invasive weeds in the Sacramento-San Joaquin Delta and associated river systems. Both of these weeds consume water, obstruct access to water, alter water quality, and displace native species. Three biological control agents are being released in Northern California to develop biological control strategies for these two weeds. The arundo wasp Tetramesa romana and the arundo armored scale Rhaupaspidotus donacis were released by ARS in 2013-2014 in Glenn County in the Sacramento River watershed, and early evidence suggests that both insects are established. The water hyacinth planthopper Megamasus scutellaris was released by CDFA and ARS in 2011-2013 at two sites in the Delta and one site in the American River watershed, and is established at the latter site. A new integrated management program for arundo, water hyacinth, and other weeds in the Delta is being coordinated by the USDA-ARS with university, state agency, and county cooperators. This program includes a focus on the interaction of weed biocontrol with herbicides,
mosquito vector control, and other pest and natural resource management projects in the Delta.

Setting and implementing regional strategies for landscape-scale invasive plant management. Morawitz, Dana. Cal-IPC. dfmorawitz@cal-ipc.org

Detecting and responding to invasive plant populations before they spread is the most effective way of limiting their impact, but prioritizing invasive plant populations at the landscape scale is challenging. Working with public and private land managers, Cal-IPC developed a transparent process to set regional priorities for invasive plant management. Our approach uses spatial distribution data from CalWeedMapper (calweedmapper.cal-ipc.org). The process is being used by seven multi-county regions in California (comprising 30 of the state’s 58 counties) to set priorities. To date, two regions have secured funding for on-the-ground management projects based on their prioritization, and others are developing funding proposals. Seven multi-county regions have selected priority species for eradication and surveillance. Of these regions, five have completed eradication work plans with budgets, and four have completed training materials to aid plant identification and reporting. Two regions have secured funding to implement on-the-ground projects based on their work plans, and two other regions are currently developing funding proposals. More than 40 organizations are significantly involved in collaborative regional planning through this process.

The two-county Northwest California region, comprising two counties that span from the Cascade mountains to the Pacific Ocean, is one of those currently developing a proposal. This project will focus on region-wide eradication of knotweed (Fallopia spp.), oblong spurge (Euphorbia oblongata), rush skeletonweed (Chondrilla juncea) and a new detection from Oregon, shiny geranium (Geranium lucidum). The 5-year project budget will be in the $1M range, a scale that is well within reach only because this mapping and prioritization approach provides funding agencies (such as California’s Wildlife Conservation Board) with a strong transparent rationale for eradicating these populations before they spread and have much greater ecological impact.

Attempts at medusahead eradication
Niederer, Christal. Creekside Center for Earth Observation. christal@creeksidescience.com

In 2007, a 5.5-acre population of medusahead (Elymus caput-medusae) was targeted for eradication at Edgewood Natural Preserve in Redwood City, CA. Eradication was selected as a goal due to the presence of sensitive species within the preserve, including a relatively small infestation, and the lack of an obvious adjacent seed source. Initial monitoring showed live medusahead cover at 22.3% (±2.1 SE), and medusahead thatch cover at another 16.3% (±1.7 SE). Experiments testing tarping, flaming, and mowing with and without thatch removal identified a single mow without thatch removal as an effective and pragmatic means of reducing cover. After two years of mowing with hand followup, medusahead was down to 1.5% cover. The monitoring protocol switched to line intercept frequency in order to detect further decreases. Initial frequency ranged from 3 to 47 hits. After another four years of mowing, no medusahead was found on or even near the monitoring transects. Approximately 12 plants have been found throughout the preserve this year. Success is likely based on well-timed mowing, which includes frequent and widespread checks of seed maturation. I will discuss how to check seed development and identify the soft dough stage in the field. The next steps towards bringing up additional issues. With density of this cryptic plant so low, the costs of aiming for eradication may seem high. Is it worth spending the money to find the last few plants, and is eradication even possible?

Catalpa speciosa control using herbicide application methods
Oats, Meghan. California State Parks. msoats@gmail.com

There are two species of non-native catalpa trees found in California, Catalpa speciosa and Catalpa bignonioides. These trees are generally used as large ornamental shade trees that are planted in urban areas as a street and lawn tree. Both species have been observed in Sacramento/San Joaquin Valley riparian corridors. We found Catalpa speciosa in our treatment areas, which were along Big Chico Creek in lower Bidwell Park in Chico and along the mouth of Big Chico Creek at the Sacramento River. There is a noticed increase over the past several years of Catalpa trees along the waterways in Chico, which will ultimately lead to a change in composition of riparian areas. Four herbicides were tested using two stem application techniques for control of both single trunks and shoots of Catalpa trees. Aquatic glyphosate and aquatic imazapir were applied using a stem injection application. Imazapyr and triclopyr were applied as a basal bark application. Treatments were compared against untreated controls. The untreated trees had no reduced canopy. Stem injection of aquatic glyphosate (50% in water, applied at a rate of 1 ml/3 inch circumference) resulted in more than 90% reduction in vigor of canopy, as well as resprouts. Furthermore, stem injection of aquatic imazapyr (66% in water, applied at a rate of 1 ml/3 inch circumference) resulted in over 95% canopy reduction and resprouts. Basal bark applications provided slightly less control as shown by the application of triclopyr (25% in oil), which resulted in 88% reduction in canopy and resprouts. Similarly, the basal bark application of imazapyr (9% in oil) resulted in an 84% reduction in canopy and resprouts. Overall, these results provide a few effective options in treating and controlling the further spread of catalpa trees along riparian corridors.

The effects of invasive forbs and abundance on fine fuel loads in a degraded coastal sage scrub habitat.
Paternoster, Joseph. DixieWater. joe@dixiewater.com

When is the best time to plant for optimum survival rates and minimal water use? A comparison of time-release water gel (TRWG) provide enough moisture to establish plants, reduce costs and lower maintenance over hand watering? Is there substantial difference in the growth of a plant (both root mass and upper body growth) when established using time-release water gel with the micronutrient zinc and glacial acetic acid (IAA), over hand watered plants. When plants feed, or photosynthesize, they grow and increase their carbohydrate storage (energy). Plants gain adequate time and moisture to grow and develop roots prior to the dormant season are assumed to have more capacity to increase carbohydrate storage. Having “food” available when spring comes, the plants have a head start. They are better able to uptake spring moisture and nutrients making planting stronger for the coming season. With today’s unstable climates spring may be the only time plants have to develop and strengthen before summer drought. The extra push plants received from carbohydrate reserves better prepare them to handle dryer climatic conditions. Findings showed late summer planting allows sufficient photosynthesis resulting in ample carbohydrate storage for spring plant growth. The addition of zinc and IAA contributes to the production of essential growth over potable water with no nutrients.

When is the best time to plant for optimum survival rates and minimal water use? A comparison of time-release water gel (TRWG) provide enough moisture to establish plants, reduce costs and lower maintenance over hand watering? Is there substantial difference in the growth of a plant (both root mass and upper body growth) when established using time-release water gel with the micronutrient zinc and glacial acetic acid (IAA), over hand watered plants. When plants feed, or photosynthesize, they grow and increase their carbohydrate storage (energy). Plants gain adequate time and moisture to grow and develop roots prior to the dormant season are assumed to have more capacity to increase carbohydrate storage. Having “food” available when spring comes, the plants have a head start. They are better able to uptake spring moisture and nutrients making planting stronger for the coming season. With today’s unstable climates spring may be the only time plants have to develop and strengthen before summer drought. The extra push plants received from carbohydrate reserves better prepare them to handle dryer climatic conditions. Findings showed late summer planting allows sufficient photosynthesis resulting in ample carbohydrate storage for spring plant growth. The addition of zinc and IAA contributes to the production of essential growth over potable water with no nutrients.

When is the best time to plant for optimum survival rates and minimal water use? A comparison of time-release water gel (TRWG) provide enough moisture to establish plants, reduce costs and lower maintenance over hand watering? Is there substantial difference in the growth of a plant (both root mass and upper body growth) when established using time-release water gel with the micronutrient zinc and glacial acetic acid (IAA), over hand watered plants. When plants feed, or photosynthesize, they grow and increase their carbohydrate storage (energy). Plants gain adequate time and moisture to grow and develop roots prior to the dormant season are assumed to have more capacity to increase carbohydrate storage. Having “food” available when spring comes, the plants have a head start. They are better able to uptake spring moisture and nutrients making planting stronger for the coming season. With today’s unstable climates spring may be the only time plants have to develop and strengthen before summer drought. The extra push plants received from carbohydrate reserves better prepare them to handle dryer climatic conditions. Findings showed late summer planting allows sufficient photosynthesis resulting in ample carbohydrate storage for spring plant growth. The addition of zinc and IAA contributes to the production of essential growth over potable water with no nutrients.

When is the best time to plant for optimum survival rates and minimal water use? A comparison of time-release water gel (TRWG) provide enough moisture to establish plants, reduce costs and lower maintenance over hand watering? Is there substantial difference in the growth of a plant (both root mass and upper body growth) when established using time-release water gel with the micronutrient zinc and glacial acetic acid (IAA), over hand watered plants. When plants feed, or photosynthesize, they grow and increase their carbohydrate storage (energy). Plants gain adequate time and moisture to grow and develop roots prior to the dormant season are assumed to have more capacity to increase carbohydrate storage. Having “food” available when spring comes, the plants have a head start. They are better able to uptake spring moisture and nutrients making planting stronger for the coming season. With today’s unstable climates spring may be the only time plants have to develop and strengthen before summer drought. The extra push plants received from carbohydrate reserves better prepare them to handle dryer climatic conditions. Findings showed late summer planting allows sufficient photosynthesis resulting in ample carbohydrate storage for spring plant growth. The addition of zinc and IAA contributes to the production of essential growth over potable water with no nutrients.

When is the best time to plant for optimum survival rates and minimal water use? A comparison of time-release water gel (TRWG) provide enough moisture to establish plants, reduce costs and lower maintenance over hand watering? Is there substantial difference in the growth of a plant (both root mass and upper body growth) when established using time-release water gel with the micronutrient zinc and glacial acetic acid (IAA), over hand watered plants. When plants feed, or photosynthesize, they grow and increase their carbohydrate storage (energy). Plants gain adequate time and moisture to grow and develop roots prior to the dormant season are assumed to have more capacity to increase carbohydrate storage. Having “food” available when spring comes, the plants have a head start. They are better able to uptake spring moisture and nutrients making planting stronger for the coming season. With today’s unstable climates spring may be the only time plants have to develop and strengthen before summer drought. The extra push plants received from carbohydrate reserves better prepare them to handle dryer climatic conditions. Findings showed late summer planting allows sufficient photosynthesis resulting in ample carbohydrate storage for spring plant growth. The addition of zinc and IAA contributes to the production of essential growth over potable water with no nutrients.

When is the best time to plant for optimum survival rates and minimal water use? A comparison of time-release water gel (TRWG) provide enough moisture to establish plants, reduce costs and lower maintenance over hand watering? Is there substantial difference in the growth of a plant (both root mass and upper body growth) when established using time-release water gel with the micronutrient zinc and glacial acetic acid (IAA), over hand watered plants. When plants feed, or photosynthesize, they grow and increase their carbohydrate storage (energy). Plants gain adequate time and moisture to grow and develop roots prior to the dormant season are assumed to have more capacity to increase carbohydrate storage. Having “food” available when spring comes, the plants have a head start. They are better able to uptake spring moisture and nutrients making planting stronger for the coming season. With today’s unstable climates spring may be the only time plants have to develop and strengthen before summer drought. The extra push plants received from carbohydrate reserves better prepare them to handle dryer climatic conditions. Findings showed late summer planting allows sufficient photosynthesis resulting in ample carbohydrate storage for spring plant growth. The addition of zinc and IAA contributes to the production of essential growth over potable water with no nutrients.
In late 2013 resource managers at Delta Meadows State Park, located near Walnut Grove, CA, reported a large-scale invasion by Taro root (Colocasia esculenta) in their orchard. This plant had not been previously collected in the wild in California, however it is a specialty crop and is grown in the Central Valley. For example, in Fresno County in 2000 there were 20 acres in production on 3 farms. A weed alert was prepared and sent out to determine if the species is more widespread in the San Joaquin Delta or elsewhere in California. The final poster will include a map of reported locations of naturalized populations as well as locations of farms, and some of the uses of the plant.

Impact of field border management on rodents in walnut orchards

Growers in California’s Sacramento Valley rate rodents as a major concern related to hedgerow field plantings according to a recent survey by R. Long. Our one-year study documented vertebrate population dynamics in relation to field border and orchard floor vegetation management in walnuts, a high value crop grown on 245,000 acres in California that is valued at $1.3 billion annually. To better understand their abundance and distribution, deer mice (Peromyscus maniculatis), house mice (Mus musculus), California voles (Microtus californicus), and western harvest mice (Reithrodontomys megalotis) were live trapped in 4 sites at 0, 10, 75, 175-meter transects away from conventionally managed field edges (mowed or sprayed for weeds) and hedgerows of California native shrubs and perennial grasses. Remote-triggered cameras documented the association of rabbits, predators, and other animals of interest to management practice.

A preliminary test performed in 2013 indicated that the application of fluorazip and clothidom may increase forb germination of annual grasses and reduced competition with forbs. Grass-specific herbicides appear to show promise as a tool for enhancing and restoring the native forb plant community.

Getting swept away by broom: 2013 re-mapping on Mt. Tam reveals faster-than-predicted spread

Weed maps are out of date before they are finished. Weed maps are out of date before they are finished. The information contained in the plan may have changed, as managed broom decreases and unmanaged broom spreads. A professional mapping team was hired for just over a month in 2013 to finish mapping begun by interns in 2011. Using GPS cameras to record populations and search areas, they recorded 1,414 acres of broom. Under the predicted-spread model of three feet per year, we expected 30 additional acres per year of broom; the mapped rate is nearly 70 acres per year, even though MMWD, its volunteers and contractors spend between 3,000 and 5,000 person-hours per year pulling brome. A phenological detectability index for invasive plants of Golden Gate National Recreation Area.

We present a phenological detectability index for plant taxa monitored by the SFAN I&M Invasive Species Early Detection Program (ISED). The ISED program conducts protocol surveys to map newly introduced invasive species in network parks. For each species encountered during surveys, detectability was ranked on a scale of 1 – 4, and phenophase was characterized for the majority of individuals observed. Occurrence data was used to rank detectability by month for each species, normalizing by the highest and lowest detectability scores that each species received over a six-year period. Most species had the highest detectability at peak flowering, as is typically assumed. However, some species and life forms were more detectable in fruit, or were equally detectable in senescence. The phenological detectability index will inform the training of field staff, and the timing of early detection surveys. This index can also be used to determine optimal timeframes for control efforts, when species are both detectable and at an appropriate phenological stage for treatment.