Ecological Approaches for Weed Management or How Not to Reinvent the Wheel

Jodie S. Holt University of California Riverside

University of California, Riverside

Outline

- Weed Science
 - Broadly defined
 - The Research-Extension continuum
 - Relevance to invasive plants
- Weed and Invasive Plant Management
 - Methods
 - Ecological principles
 - Integrated approaches
- Examples

What is Weed Science?

- Discipline defined by organisms studied
- Combines basic and applied sciences
- Includes continuum from research to extension of knowledge
- Traditionally focused on agricultural and managed lands
- 50+ year history as a a scientific discipline

Components of Weed Science

(Radosevich and Ghersa. 1992. Weed Technol. 6: 788-795)

Research-Extension Continuum

- Land grant universities
 - Basic research
 - Agricultural Experiment Station researchers
 - Applied research
 - Cooperative Extension Specialists
 - Extension/outreach
 - Cooperative Extension Advisors

Weeds and Invasive Plants

• Weed

- A plant growing where it is not desired
- A plant that is objectionable or interferes with the activities or welfare of humans
- Invasive Plant
 - Exotic plant that occurs and spreads outside of its native range
 - Plant that negatively impacts wildlands
- Weed Science applies to both agricultural and wildland ecosystems

Management of Weeds (and Invasive Plants)

- Minimize weed presence to achieve desired land use goal
- Grow or foster desired vegetation
- Suppress or remove weeds without injuring crop or desirable species

Weed Management Techniques

- Prevention
- Eradication
- Control
 - Biological
 - Chemical
 - Cultural
 - Mechanical, Physical
- Integrated Weed Management

Ecological Principles in Weed Management

- Ecological principle
 → Weed control practice

 Reduce seed bank inputs
 - Prevention, solarization, control before seed set
 - Allow crop (native) earlier resource capture
 - Plant early, cultivate early, plant crop transplants
 - Reduce weed growth and resource capture
 - Cultivate, mow, mulch, apply herbicides
 - Maximize competitive effects of crop (native) on weed
 - Plant smother or cover crops, intercrops
 - Modify environment to make weeds less well-adapted
 - Rotate crops, control methods, herbicides

Weed Seed Bank

Critical Period for Weed Control

 Cultural control of annual weeds using optimal timing

Carbohydrate Reserves in Perennial Weeds

 Cultural control of perennial weeds using optimal timing

Integrated Weed Management

- Weed suppression by combination of methods
- Based on knowledge of weed biology and ecology
- Cost effective and environmentally sustainable
- Herbicides are one tool among many

Conceptual Framework for IWM I—Single weed control tool Plant-field scale II—Multiple weed management tools • Plant-field-farm scale III—Cropping system design • Farm-landscape scale IV—Landscape and regional management Landscape-region scale V—Agro-ecoregion policy management Regional-global scale

(Cardina et al. 1999. In Buhler, ed., Expanding the Context of Weed Management)

Innovative Approaches to IWM

Ecological

- Management based on weed thresholds
- Site specific management
- Predictive models
- Agronomic
 - Improving soil quality
 - Breeding crop competitiveness
- Economic
 - Weed forecasting
 - Decision models

Examples.... Ecological Approaches for Management

• Arundo

- Mike Rauterkus, M.S.
- Lauren Quinn (Ph.D. December)
- Dr. Virginia White, Post doc
- Artichoke thistle
 - Robin Marushia, M.S. (Ph.D. candidate)
 - Dr. Virginia White

Arundo donax Control

- Mechanical removal in monocultures
- Hand removal in sensitive areas
- Herbicide (Rodeo©) in some sites
 - Aerial or ground application in monocultures
 - Selective use in mixtures with natives

Objectives of Arundo Research

- Resource use of Arundo and natives
 - Invasiveness of Arundo
 - Response of native species
- Arundo impacts on riparian habitat
 - Effects on habitat of natives
- Control and habitat restoration
 - Alter habitat to favor natives

Salix gooddingii Goodding's willow

Scirpus americanus American bulrush

Percent Full Sun vs. A. donax Cover

Light Effects on Biomass Production

S. gooddingii

S. americanus

Riparian Restoration Experiment

- Objective
 - Test ability of native mixtures to resist invasion by Arundo
- Simulated riparian community
 - Tree (Salix gooddingii)
 - Shrub (Baccharis salicifolia)
 - Rhizomatous sedge (Scirpus americanus)
 - Alone and in all 7 possible combinations
- Arundo planted into ½ plots in 2003 and ½ in 2004

Summary of Results

- Native species identity determined Arundo success
 - Shrubs (Baccharis) slowed emergence of Arundo
 - Shrubs reduced colonization by native species from adjacent experiment
- Arundo success not impacted by community composition or diversity
- Arundo grows well at UCR Field Station!

Control and Restoration Experiment

• Objective

- Design treatments to favor natives and reduce Arundo regrowth
- Design

- 100%, 50%, and 0% Arundo removal
 - Cut shoots and treated stumps with (75% glyphosate)
- $-\frac{1}{2}$ plots revegetated with willows, $\frac{1}{2}$ not
- Data collected before and monthly after treatments
 - Soil temperature, moisture; light; LAI; cover, density

Summary of Results to Date

Control

- No resprouting from treated Arundo
- Little to no regrowth from treated Arundo
- Untreated shoots in treated clumps are chlorotic

• Restoration

- Poor survival of willows
- Replanting planned following first rains
- Optimal time for control may not be optimal time for restoration

Artichoke Thistle Life History

rosette

First years Later years

seed \rightarrow seedling \rightarrow juvenile \rightarrow rosette

Artichoke Thistle Research Objectives

- Invasiveness
 - Seed dispersal characteristics
 - Demography and phenology
- Control
 - Herbicide, clipping, burning
- Predict *Cynara cardunculus* development
 - Improve timing of control efforts

Downwind Seed Dispersal in Vegetated Site

Downwind Seed Dispersal in Non-vegetated Site

Predictive Management

- Construct phenological model for artichoke thistle development
- Investigate methods of control
- Use phenological prediction to schedule timing of control strategies

Seedling model Adult resprout model

Conclusions— Don't Reinvent the Wheel

- Weed Science and researchextension continuum
 - Framework for management of invasive species
- Basic information on biology, ecology, genetics, ...
 - Informs management
 - Required for specific recommendations

