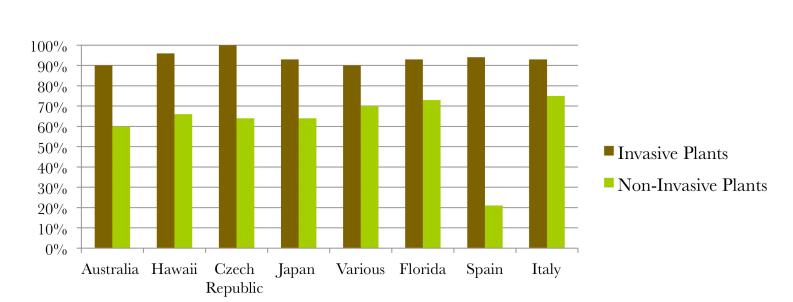

A plant risk evaluation tool for assessing the invasive potential of ornamental plants

Christiana Conser and Joseph DiTomaso Department of Plant Sciences, University of California, Davis

INTRODUCTION


Weed Risk Assessment (WRA) methods for screening potential new plant introductions through the horticultural industry have evolved rapidly in the last decade. To be accepted as a tool to evaluate current plant inventories and new plant introductions within the industry, it is critical that a pre-screening tool not only accurately predict invasive potential of a species, but also accurately predict non-invasiveness without falsely categorized them as invasive. In this study, we developed a new, abbreviated and highly accurate Plant Risk Evaluation (PRE) tool specific for plants originating from the ornamental industry.

U.S. New Plant Introductions

Global Comparison – WRA

Low accuracy for non-invasive plants

PRE Features

Accuracy	• 95% for non-invasive
Regionality	 Evaluates risk for any region
Specificity	 Species (Wildtype) or Subspecies (Cultivars/Hybrids)
Sterility	• Sterile & Non-sterile Species
Proactive	• Early in R&D
Fast	 Quick results

METHODS

Types of Questions

- Taxonomy
- Cultivar names
- Global and regional invasive history
- Climate match
- Difficulty of control
- Environmental impacts
- Reproduction
- Dispersal
- Growth

PRE Process

- Literature review for plant species and/or cultivar
- 19 questions individually weighted
- Answer questions
- Calculate score, % of questions answered
- Compare to PRE rating scale

Q Predictability

Screen Species	• IP
	• non-IP
Data Analysis	• Score ranges
	• % Q answered
Q Elimination	• Fischer's (two-tailed) $P < 0.05$
Criteria	• Answered $< 20\%$
	 Irrelevant/Biased
Result	• Remove non-predictive Q's

PRE Accuracy

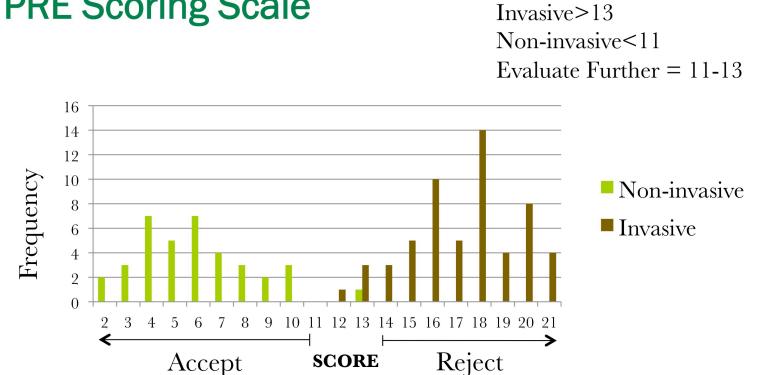
Screen Species	• IP
	• non-IP
Data Analysis	• Score ranges
	• % of Q answered
	 Fischer's Exact Test (two-tailed)
Tool Performance	• Misclassification (false +/-)
	 Accuracy
	 Sensitivity/Specificity

RESULTS

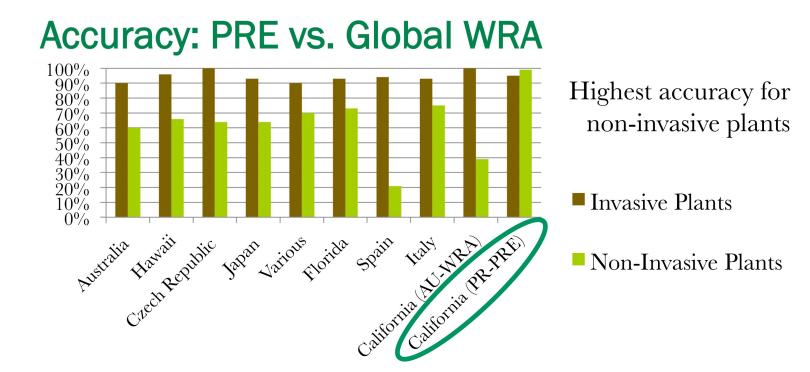
56Q Predictability

Screen 35 Species	21 IP14 non-IP	Cal-IPCPlant-Right
Data Analysis	Score ranges% Q answered	IP 21-44Non-IP 5-14Range 5-100%
Q Elimination	 Fischer's P<0.05 Answered <20% Irrelevant/Biased 	• Removed 27 Q's
Result	• Reduced from $56Q > 29 Q$	

19Q PRE Accuracy


Screen 94	• 57 IP	• Cal-IPC
Species	• 47 non-IP	 Plant-Right
Data	 Score ranges 	• IP 12-21
Analysis		• Non-IP 2-10
	 % of Q answered 	• Range 54-100%
		• Avg 97%
	• Fischer's	• 16 Qw/ P>0.05

19Q PRE Accuracy Data


	w/EF		w/o EF	
	<u>IP</u>	Non-IP	<u>IP</u>	Non-IP
True +	53%	_	53%	-
True -	-	36%	-	36%
False +	-	1%	-	-
False -	$4^{0}/_{0}$	-	-	-
Accuracy	93%	97%	$100^{\circ}\!/_{\!o}$	100%

EF = evaluate further

PRE Scoring Scale

CONCLUSIONS

Next Steps

- Scientific validation of model (in process)
- Beta-test PRE for industry-wide deployment
- Launch online PRE tool and database
- Climate modeling for more regional accuracy
- "Rapid Screening" for bulk inventories

Collaborators

- Christiana Conser UC Davis, Department of Plant Sciences
- Lizbeth Seebacher
- Washington Department of Ecology Sarah Reichard
- UW, School of Environmental and Forest Sciences
- Joseph M. DiTomaso UC Davis, Department of Plant Sciences

PRE Screeners

- Christiana Conser
- UC Davis, Department of Plant Sciences Lizbeth Seebacher
- Washington Department of Ecology
- Rachel Brownsey UC Davis, Department of Plant Sciences
- Kristina Wolf
- UC Davis, Department of Plant Sciences
- Casey Erickson UC Davis, Department of Plant Sciences
- John Short UC Davis, Department of Plant Sciences

Funding

