The susceptibility of strip-seeded restoration sites to invasive species

Julea A. Shaw, Leslie M. Roche, Travis Bean, Emilio A. Laca, Andrew P. Rayburn, and Elise S. Gornish

Spatially Patterned Seeding

- Dense patches of native seeds
- Seeded species disperse to non-seeded areas
- Strip seeding
 - Horizontal patches

Spatially Patterned Seeding

- Dense patches of native seeds
- Seeded species disperse to non-seeded areas
- Strip seeding
 - Horizontal patches

Spatially Patterned Seeding

- Dense patches of native seeds
- Seeded species disperse to non-seeded areas
- Strip seeding
 - Horizontal patches

Strip seeding benefits

- Reduced cost
- Increase native diversity and cover
- Reduce invasion success
 - Dense seeding of natives
 - Invasion resistance

Strip seeding benefits

- Lower seed and labor costs
- Increase native diversity and cover
- Reduce invasion success
 - Dense seeding of natives
 - Invasion resistance

Site Description

- •UC Davis Research Farm
- •Fall 2011: mix of 7 native grass species seeded
 - •6 perennials
 - •1 annual

Strip Seeding Treatments

Adapted from Rayburn & Laca 2013

Question

 How does seeding of natives at different levels influence invasion success?

- Community
- Invasion resistance
- Growth and reproduction

Species richness

• All seeding treatments reduced non-native richness

Species Abundance

Decreased non-native cover with seeding

NMDS by Treatment

Most Common Invasive Species

Foxtail barley, Hordeum murinum

Slender wild oat, Avena barbata

Ripgut brome, Bromus diandrus

Soft chess, Bromus hordeaceus

Invasive cover by treatment

Conclusions

• How does seeding of natives at different levels influence invasion success?

- Community
 - Decreases overall non-native richness and abundance
- Invasion resistance
- Growth and reproduction

Non-native Abundance

Abundance In Unseeded Strips

Conclusions

- How does seeding of natives influence invasion
 - success?
 - Community
 - Decreases overall non-native richness and abundance
 - Response depends on species
 - Invasion resistance
 - Confers some degree of invasion resistance to unseeded strips

Growth and reproduction.

Most Common Late-Season Invasives

e Petric 1. Alexander

Prickly lettuce, Lactuca serriola

Field bindweed , Convolvulus arvensis

Late-season invasives in seeded vs unseeded strips

- •Biomass
- Number of flowers

Field Bindweed

- Reduced height for all seeding levels
- Biomass response depended on treatment

Prickly Lettuce

- Height response depended on seeding level
- No difference in biomass

Field Bindweed Flower Number

 71% reduction in flower number in seeded vs. unseeded

Prickly Lettuce Flower Number

 45% reduction in flower number in seeded vs. unseeded strips

Conclusions

 Strip seeding decreases non-native richness and abundance regardless of seeding level

 Seeded patches confer invasion resistance to adjacent non-seeded areas

 Invasive species in seeded areas are less successful in terms of flower production

Acknowledgements

Gornish Lab

- UC Rangeland Labs: DJ Eastburn & Kelsey DeRose
- UC Davis Field HQ staff


```
Prickly Lettuce Height
```


- Average decrease 12%
- Driven by the 33% seeded treatment

 No difference in biomass, on average

Field Bindweed Height

Restoration treatment type (% seeded)

C Patrix J. Akagada

Field Bindweed Biomass

- Reduced biomass in plots with higher seeding level
- Lower biomass on average (25% lower)

Native grasses

- Hordeum brachyantherum
- Poa secunda
- Melica californica
- Elymus multisetus
- Elymus glaucus
- Stipa pulcra
- Vulpia microstachys (A)

Seeding rates

			Approximate	
Botanical Name (Common Name)	Ecotype/Orgin	Appproximate Live Seeds/Bulk Lb.	Live Seeds/Square foot	Bulk Ib/Acre
Poa secunda (pine bluegrass)	Yolo County: Fiske Creek	680,000	23.4	1.50
Vulpia microstachys (three weekfescue)	Yolo County: Fiske Creek	330,000	7.6	1.00
Elymus multisetus (big squirreltail)	Yolo County: Lynch Creek	52,000	3.6	3.00
Melica californica (California oniongrass)	Yolo County: Fiske Creek	238,000	13.7	2.50
Nassella pulchra (purple needlegrass)	Yolo County: Fiske Creek	50,000	6.9	6.00
Elymus glaucus (blue wildrye)	Yolo County: Yolo Bypass	118,000	5.4	2.00
Hordeum californicum (California barley)	Colusa County: Hwy 120	141,000	6.5	2.00

NMDS by Location and Strip Type

PERMANOVA showed a significant location * strip type interaction (p > 0.05)

Native vs. Non-native Abundance In Seeded Strips

• No differences in native or non-native abundance among treatments