Habitat suitability modeling of velvet grass (Holcus lanatus) in Yosemite, Kings Canyon & Sequoia National Parks

> Erin Degenstein, Humboldt State University October 10, 2014

Background

2008

Mission:

Protect Sierra Nevada wilderness from an ecosystem invader.

Velvet grass attacks unsuspecting lily

Location: Kern Canyon, Sequoia NP

Kern Canyon & River

Target: velvet grass (H. lanatus)

Photo Credit: Franz Xaver

Hand tools, clipping inflorescences, laying tarps, hand-pulling, herbicide...

Early Detection: The Best Defense

"If I were velvet grass, where would I live?"

Challenges: Small crews, big parks.

Long travel times

- Short time frames
- Limited resources

Rich Thiel descends from a monster weed survey

Mission:

Help prioritize early detection surveys for velvet grass.

(a.k.a. "Year of the Mouse Arm")

The click is mightier than the sword

Habitat Suitability Analysis:

From: "If I were velvet grass, where would I live?"

To: "What is the likelihood from 0 to 1, given the existing environmental variables, that a defined area contains suitable habitat for velvet grass?"

Presence Data: 2,865 points

Two models produced in Maxent:

10 m Resolution	900 m Resolution
 Terrain and 	 Climate data
vegetation data	(BioClim)

10 m resolution model inputs

Predictor Layer	Contribution to Model
Slope	70.7%
Vegetation Community	21.9%
Distance to Stream*	7.3%

*Euclidean distance

900 m resolution model inputs

-	Predictor Layer	Contribution
,	Annual Mean Temperature	28.1%
	Annual Precipitation	16.4%
	Min. Temperature of Coldest Month	14.7%
	Precipitation of Driest Quarter	14.3%
	Mean Temperature of Wettest Quarter	13.9%
	Mean Temperature of Coldest Quarter	7%
	Precipitation of Driest Month	5.6%

H. lanatus Presence Points Per Km²

- High : 130

Low : 1

Habitat Suitability Likelihood

> 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6

0.6 - 0.7 0.7 - 0.8 0.8 - 0.9

H. lanatus Presence Points Per Km² High : 130 Low : 1 Habitat Suitability Likelihood 0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7 0.7 - 0.8 0.8 - 0.9

Pros and Cons

	Model	10 meter	900 meter
	Pros	 High resolution, more useful for field surveys 	 Ability to forecast for climate change Quick to process data
	Cons	 No ability to forecast Memory intensive 	Coarse resolution

Caveats

- Presence data is biased (it's collected by humans!)
- Lack of presence does not necessarily mean habitat is unsuitable
- Predictions are only as accurate as the input data (instrument error, human error)
- Habitat suitability is only a piece of the puzzle...

Future Research

- Use a better indicator of soil moisture, such as topographic wetness index (TWI)
- Use soil data (coming soon!)
- Higher resolution climate data
- Combine with a "risk of introduction" model (proximity to trail, river, helipad...)

Acknowledgements

Humboldt State University: Dr. Alison O'Dowd, Dr. James Graham, Dr. Michael Mesler

National Park Service: Charles Repath, Garrett Dickman, Athena Demetry, Rich Thiel, Ginger Bradshaw, Lizo Meyer, Sylvia Haultain, Laura Pilewski, Jessica Miles, Corie Cann, and weed warriors in the Sierra Nevada and beyond!

HUMBOLDT STATE UNIVERSITY

erd164@Humboldt.edu

Users.Humboldt.edu/ErinD