Distribution of reactive nitrogen species in California based on passive sampler monitoring campaigns

Passive samplers are used for monitoring:

Ozone (O₃)

Nitrogen dioxide (NO2)

Nitrogen oxides (NOx)

Nitric acid vapor (HNO₃)

Ammonia (NH₃)

Sulfur dioxide (SO₂)

Forms of N deposition to forests and other ecosystems

- Wet deposition (rain, fog, cloud, snow) of NO₃⁻
 and NH₄⁺
- Dry surface deposition of HNO₃, NH₃ and particulate NO₃⁻ and NH₄⁺
- Stomatal uptake of NO, NO₂, NH₃, HNO₃, PAN and PPN
- In the Mediterranean climate (California) dry deposition of N dominates

Geostatistics

- Use of ArcGIS Geostatistical Analysts (ESRI, Redlands, CA) for development of distribution maps.
- Various types of Krigin, Co-Kriging and Inversed Distance Weighing (IDW) have been used for conversion of point data from passive sampler networks into landscape surfaces.

N air pollutants in southern California - summer 2005

HNO₃ and NH₃ is southern Sierra Nevada, summer 2007

Modified inferential method for N dry deposition estimates - example of the San Bernardino Mountains

- A new approach to estimates of atmospheric nitrogen deposition to forests and other ecosystems in arid and semi-arid areas using a modified, GIS-based inferential method.
- Can be used for identifying areas receiving excessive amounts of nitrogen (exceedance of "Critical Load")

GIS-based inferential method approach to N dry deposition estimates – data input

- Concentrations of major reactive N gases (HNO₃, NH₃, NO and NO₂) from passive samplers (c) for 2002 2006 summer seasons.
- Leaf area index (LAI) from MODIS images (1 x 1 km) for periods corresponding with passive sampler exposures.
- Land cover based on classification of the Society of American Foresters.

GIS-based inferential method approach to N dry deposition estimates - calculations

- Empirical (HNO₃ + NO₃ part.) and (NH₃ + NH₄ part.) conductance (K) to calculate NO₃ and NH₄ surface flux (ponderosa pine, white fir, California black oak, hoaryleaf ceanothus, pinion pine) based on branch rinsing.
- Surface flux (F) = c x K x LAI
- Stomatal uptake for NO, NO₂, NH₃ and HNO₃
 based on stomatal conductance (c_s) of key species.
- Total N dry deposition = sum of all surface fluxes and stomatal uptake of individual reactive gases.

BASIC PARAMETERS:

Monitoring network for ambient N pollutants: 14 day averages, June – September, 2002 – 2006

HNO₃

Land Cover

- Source: USFS "Eveg" Spatial Data Product
- Temporal Currency: 2002-2003
- Scale: 1:24,000
- Classification: SAF and SRM (for non-forest types)
- Provides geometry with identified surface area

Leaf Area Index

- Source: MODIS (terra)/Science Data Product MOD15A2
- Resolution: 1 kilometer, 8 days

San Bernardino Mountains MOD15A2 (Terra LAI 8-Day/1km)

May 9 - 16, 2002

Highest stomatal uptake - NH₃

June – September, 2006

Highest surface deposition - HNO₃

June – September, 2006

Total N dry deposition: internal uptake of NH₃, NO, NO₂ & HNO₃ plus surface deposition of HNO₃ & NH₃

Exceedances of Critical Loads – extrapolation to total annual N deposition values based on the 2002 CMAQ data for the SBM

- 3.1 kg N/ha yr (lichens, mixed conifers) [1,607above]
- 5.5 kg N/ha yr (lichens, chaparral) [2,398]
- 10.0 kg N/ha yr (low value for nitrate leaching, chaparral) [4,360]
- 14.0 kg N/ha yr (high value for nitrate leaching, chaparral) [6,104]
- 17.0 kg N/ha yr (nitrate leaching, mixed conifers) [7,412]

Conclusions

- 1. Pollution maps based on passive sampler data allow for seeing "hot spots" of individual pollutants and source of their origin.
- 2. Our modified inferential method provides an alternative to the CMAQ estimates of N deposition and allows for:
 - detailed spatial and temporal resolution
 - obtaining data for a desired specific season (year)
 - evaluating impacts of N deposition on biodiversity changes (expansion of invasive species; exceedance of Critical Loads for sensitive indicators, e.g., lichen communities)

Thank you!!!

