Vinca major control in an endangered plant population on Santa Cruz Island, California

Channel Islands

University of California NATURAL RESERVE SYSTEM

Growing Solutions Restoration Education Institute Presenter - Ken Owen Channel Islands Restoration

Project Collaborators:

Kathryn McEachern, Katie Chess

– U.S. Geological Survey

Ken Niessen – La Luna Biological Consulting

David Chang – County of Santa Barbara Agricultural Commissioner's Office

Karen Flagg – Growing Solutions

Ken Owen, Kevin Thompson

- Channel Islands Restoration

Lyndal Laughrin – Santa Cruz Island Reserve

Mary Root – U.S. Fish and Wildlife Service

Sea-cliff bedstraw *Galium buxifolium* Rubiaceae (Madder Family)

Dieter Wilken photos

Distribution

Northern Channel Islands

Distribution

San Miguel

Anacapa

Santa Rosa

Distribution

Santa Rosa

26 total confirmed populations

- There are 14 newly discovered populations
- A total of 21 populations with confirmed historic or new records
- Numbers range from 1 to about 200 plants each
- Area occupied ranges from 1 to 8,000 square meters

Habitats

• Cliff faces

- Refugia
- Dominated by remnant native shrubby vegetation
- Formerly more widespread on terraces above cliffs

Pelican Bay

Pelican Bay 1913 - 1937

Pelican Bay Today

The Problem: Greater periwinkle (Vinca major)

- 1. Galium and the Vinca appear to be spreading from the cliff face upslope onto a series of natural outcrops, and rock walls and benches
- 2. Native scrub community appears to be recovering at the site
- 3. Vinca appears to be moving into the native scrub where it displaces small plants, including small *Galium*.

Problem Resolution

- Reduce Vinca cover and encourage Galium spread to sites away from Vinca for self-sustaining population
- 2. Develop and demonstrate a methodology for control of an invasive weed within the habitat of an endangered plant

Project Objectives

- Vinca control on all but vertical cliff face
- Natural native plant community expansion
- Galium expansion beyond current boundaries (no planting)

Project Design

Multi-year effort in collaboration - USGS, NPS, TNC, USFWS, CIR

Treat Vinca

Maintenance

Monitor:

- Treatment success
- Effects on native community and Galium

2 Stages

Stage 1 - Implementation

 Initial heavy treatment to eliminate (reduce by 90%) Vinca cover on terrace 2008-2010

2 Stages

Stage 2 – Maintenance

Long-term maintenance to allow native expansion beyond 2010

Monitor effectiveness

- Galium demography
- Vinca cover
- Plant community composition

Risks:

Incomplete Vinca kill and wasted effort Unintended Galium mortality Habitat damage Human safety

Stage 1 - Implementation

- Development phase (dates/techniques)
- Collect data on size-class structure Galium, Vinca cover, native plant community
- Collect and bank seed as insurance against loss
- USFWS funding/permitting
- Develop rappelling techniques for safety

Techniques

A

- Anchor Point Rebar stakes Belayer location Safety lines
 - Work area

Hand-removal Vs. Herbicide Treatment

Both ends of the flag inserted in ground

Galium plant separated from Vinca

Treated Vinca

Initial Treatment

Monitoring Results

 Data prior vs data post Galium occupied area Number of Galium • Galium stage structure • Vinca kill rate Vinca cover Plant community composition (releves)

Conclusions thus far

- Successful initial stage
- Vinca kill 95% (techniques work)
- Minimal habitat damage
- Galium kill minimal (no net loss)
- Galium recruitment evident

In 2010 there was a huge increase to 292 established plants; about 75% of those appeared to have germinated in 2009 across both treated and non-treated areas.

12 new seedlings in 2006, to 277 seedlings in 2010.

Established *Galium* plants <u>and</u> seedlings:

2006: 119 2008: 131 2010: 506

Is this to do <u>solely</u> the project?

Challenges

- Work setting access and safety
- Accessing Vinca plants
- Weather and herbicide application window
- Protecting Galium from herbicide
- Limiting habitat damage
- Vinca in tenacious!

Stage 2 - Maintenance

- Continue effects monitoring
- Vinca control cliff face distribution
- Look for natural expansion over several years
- Assist expansion if necessary in future project

