Variable responses of a California grassland to the reintroduction of tule elk

Brent Johnson - National Park Service

large mammalian herbivores

effects of large herbivores

- consuming & trampling plants
- changing nutrient cycles
- alter competition between plants
- modify successional processes

human impacts on herbivores

- altered distribution and abundance
 - 10,000+ years in N. America
 - negative impacts increased with the arrival of Europeans
 - increased hunting and habitat loss
- conservation efforts
 - species and habitat protection
 - reintroductions are often necessary
 - many herbivore populations are now increasing

human impacts

- bison
 - 1800: 30-60 million
 - 1889: fewer than 1,000
 - protection & reintroduction
 - presently 5,000-6,000 in U.S
 - still increasing

prevailing focus of reintroduction

- target species
 - population size
 - genetic diversity
 - health of population
- less emphasis on recipient community

reintroduction into altered landscapes

- fragmented
 - movement patterns changed
- reduction of predator populations
- transformed plant communities
 - non-native species

Tule Elk (Cervus elaphus nannodes)

- endemic to California
- subspecies of North American elk

tule elk through the years

- 1769 500,000 tule elk in California
- 1850 <10 tule elk in California's Central Valley
- 1873 protected species
- 1905 reintroduction efforts began
- 1970 500 tule elk throughout CA
- Present 2,700 individuals in 22 sites
- 1978 13 tule elk to Tomales Point Elk Reserve

elk population on Tomales Point

Tomales Point Elk Reserve

- Point Reyes National Seashore, Marin Co.
- 1030 ha enclosed reserve

Tule Elk in an altered landscape

- movements restricted to the point
- large predators absent
- transformed by introduced plant species
- unclear consequences

research questions

- Does an invasive grass avoid elk herbivory by associating with a native shrub species?
- Do elk play a critical role in maintaining grasslands by slowing the colonization of shrubs?
- How does herbivory by reintroduced elk alter plant communities, and does this vary with habitat type?

experimental design

- large scale exclosure experiment
 - established in 1998 by National Park Service
 - 24 plots: 12 fenced and 12 unfenced
 - 36 x 36 m

neighborhood effects

- Does an invasive grass avoid elk herbivory by associating with a native shrub species?
- Holcus lanatus (velvet grass)
 - non-native perennial grass
 - invasive in California's coastal grasslands
- Baccharis pilularis
 - native shrub
 - widespread

neighborhood effects

- only in Baccharis plots
- abundance (2003) and biomass (2002) of *Holcus*

neighborhood effects: abundance

neighborhood effects: biomass

neighborhood effects

 native shrubs provide refuge for an exotic grass by protecting it from elk herbivory

shrub cover

 Do elk play a critical role in maintaining grasslands by slowing the colonization of shrubs?

shrub cover

community composition

 How does herbivory by reintroduced elk alter plant communities, and does this vary with habitat type?

community composition

• 2002

- harvested aboveground living and dead biomass
- 2003
 - abundance (number of individuals)
 - species richness

multivariate analysis

- complexity of community data
 - reduce dimensionality of data set
- non-metric multidimensional scaling (NMS or nMDS)
- multi-response blocked permutation procedure (MRBP)

multivariate analysis

<u>MRBP</u>: A=0.35, p<0.0004

community: statistical analysis

- multifactorial MANOVAs & ANOVAs
 - elk treatment (present or absent)
 - grassland type (Baccharis, Lupinus, open)
 - plot pair, nested within grassland type
- response variables

plant functional groups/life forms

- annual dicots
 - native and exotic
- annual monocots
 - exotic
- perennial dicots
 - native and exotic
- perennial monocots
 - native and exotic

total abundance

abundance: annuals

abundance: perennials

total species richness

species richness: annuals

species richness: perennials

biomass: annuals and perennials

biomass: thatch

making sense of responses

- shrub cover
- richness [native perennial dicots]

- biomass [annuals]
- richness [annuals] & [native per. monocots]
- abundance [annuals]

-Holcus lanatus

conclusions

- they're back!
- complex
 - elk have +/- effects on natives and exotics
 - no easy answers
- potential solutions
 - manage for mosaic of states

acknowledgements

advisor: Hall Cushman field assistants: Catherine Cumberland, Amy Nadell, Trisha Tierney National Park Staff: Natalie Gates, Michelle Coppoletta & Dave Schirokauer defense committee: Dan Crocker & David Stokes statistical advice and consoling: Karina Nielsen & Mauran Rank the Cushman lab: Michelle Cooper, Jim Coleman, Emiko Stevens, Nelina Karmins & Jeff Amara

Tomales Point Elk Reserve

