

Pollinator roles in agriculture and ecosystems

How pollinators forage

How pest management strategies impact pollinators

Case studies on the interactions of weeds and pollinators

Summaries and thoughts

Ecosystem services provided by pollinators

Pollination Raw Materials Food Production
Recreation

>50 % Pollinator Dependent

25-50 % Pollinator Dependent

10-24 % Pollinator
Dependent

>10 % Pollinator Dependent

Not an OAS State

Total Agricultural Exports (2005) = \$172 Billion

IMPORTANCE OF POLLINATORS TO U.S. AGRICULTURAL CROPS: VALUE OF AGRICULTURAL PRODUCTION (2007)

Ecosystem services supported by pollinators

Climate Regulation
Nutrient Cycling

Erosion Control ...and others

Ecosystem services supported by pollinators

The Biology of Bees

More than 1500 species in California

About 70% nest in the ground

Most native bees are solitary nesters

Native bees have seasonal emergence patterns

Size limits foraging range

Small bees - 200 m

Medium bees - 500 m

Large bees - 1 km Honey bees - 2 km +

POLLINATOR PARTNERSHIP

The Biology of Butterflies

Require larval host plants to lay eggs

Nectar plants required for adults

Need sunlit basking areas

Migratory species need habitat throughout the landscape at the right time.

What do weeds do to pollinators?

Removing exotics increases abundance and diversity of butterflies

- Mulching and felling of Chinese privet tested for impact on butterflies
- Removal increased populations (diversity and abundance)

(Hanula and Horn 2011)

Butterflies prefer native plants

- Butterflies prefer woody plants (likely due to structure)
- Native plants have more butterflies (diversity and abundance)

(Tallamy and Shropshire 2009)

 Host plant presence as a significant factor in determining species occurrence (multiple sources)

Bees do not prefer nonnatives, but will use them

(Williams et al. 2011)

- Dominance in landscape makes a plant more used.
- Non-natives can be important food sources in the absence of natives

Non-native species support each other

Work from New Zealand

(Handley and Goulson 2003)

- The flowers of introduced plants are visited by introduced bees.
- Increased seed set when introduced plants are visited by non-native bee species.

Weed eradications will have an impact on the local pollinator community

- Remove a food source (food desert)
- Change foraging dynamics
- Improve nutrition/habitat
- Reinstate natural phenologies
- Reduce/Increase competition from other species

Pesticide Toxicity

Insecticides: potentially the most toxic because most pollinators are insects.

Fungicides and herbicides: do not normally kill pollinators directly. Pollinators may be indirectly harmed when herbicides destroy flowers.

Nematicides and miticides: toxic to pollinators

Rodenticides: may be toxic to bat and bird pollinators

Ground nesting bees can be impacted by tilling, machinery, mulches, and burning.

Extensive mowing can remove a food source – timing is everything.

- mowing increased bee and butterfly occurrence (Noordijk et al. 2009), but initial decreases occurred due to food plant availability
- limited and timed mowing were the most successful in increasing beneficial species
 OCCUrrence (Ries et al. 2000; Wynhott et al. 2011)

Landscape Management that promoted butterflies

- Host plant presence is paramount
- Increased edges (scalloped edges), favored trees, and increased bare ground provided better butterfly habitat (Carter and Anderson, 1987).
- Sunlight important in occurrence patternsbasking behaviors (Smallidge et al. 1996).

Landscape Management that promoted butterflies

 Native plant seeding increased native bee presence (Hopwood et al. 2009)

 Bumble bees were positively influenced by roadside mowing (Noordijk et al. 2009)

Effect of Honey Bees and Landscape Management on Fruit Quality (weight) in Southern Mississippi forest landscapes.

References - Also on hand-out

- Barthell JF, Randall JM, Thorp RW and Wenner AM(2001) Promotion of Seed Set in Yellow Star-Thistle by Honey Bees: Evidence of an Invasive Mutualism. Ecological Applications 11(6):1870-1883
- Carter CI, Anderson MA (1987) Research information note 126: Enhancement of lowland forest ridesides and roadsides to benefitwild lands and butterflies. UK Forestry Commission Research Division, Surrey. Booklet.
- Fiedler AK, Landis D and Arduser M (2011) Rapid Shift in Pollinator Communities Following Invasive Species Removal Restoration Ecology: doi: 10.1111/j.1526-100X.2011.00820.x
- Handley ME and D Goulson (2003) Introduced weeds pollinated by introduced bees: Cause or effect? Weed Biology and Management 3: 204-212
- Hanula JK and Horn S (2011) Removing an exotic shrub from riparian forests increases butterfly abundance and diversity. Forest Ecology and Management 262: 674-680
- Hopwood J, Winkler L, Deal B, and Chivvis M (2009) Use of roadside prairie plantings by native bees.
- Middleton EL, JD Bever, and PA Schultz (2010) The Effect of Restoration Methods on the Quality of the Restoration and Resistance to Invasion by Exotics. Restoration Ecology 18: 2:181-187
- Noordijk J, Delille K, Schaffers AP, and Sykora KV (2009) Optimizing grassland management for flower-visiting insects in roadside verges. Biological Conservation 14: 2097-2103
- Ries L, Debinski DM, and Wieland ML (2001) Conservation value of roadside prairie restoration to butterfly communities. Conservation Biology 15(2): 401-411
- Smallidge PJ, Leopold DJ, and Allen CM (1996) Community Characteristics and Vegetation Management of Karner Blue Butterfly (*Lycaeidesmelissa samuelis*) Habitats on Rights-of-Way in East- Central New York, USA. British Ecological Society 33: 1405-1419
- Tallamy DW and KJ Shropshire (2009) Ranking Lepidopteran Use of Native Versus Introduced Plants. Conservation Biology 23: 4,:941-947 DOI: 10.1111/j.1523-1739.2009.01202.x
- Valtonen A, Jantunen J, and Saarinen K (2006) Flora and lepidoptera fauna adversely affected by invasive Lupinus polyphyllus along road verges. Biological Conservation 133: 389-396
- Way JM (1977) Roadside verges and conservation in Britain: A reveiw. Biological Conservation 12: 65-74
- Williams NM, Cariveau D, Winfree R, Kremen C (2011) Bees in disturbed habitats use, but do not prefer, alien plants. Basic and Applied Ecology 12: 4: Pages 332-341
- Wynhoff I, van Gestel R, van Swaay C, and van Langevelde F (2011) Not only the butterflies: managing ants on road verges to benefit *Phengaris* (*Maculinea*) butterflies. Journal of Insect Conservation 15: 189-206

Thank You - Questions

