Status of Biological Control Projects on Invasive Alien Weeds in California

Lincoln Smith

Exotic Invasive Weeds USDA-ARS Albany, California

Michael Pitcairn

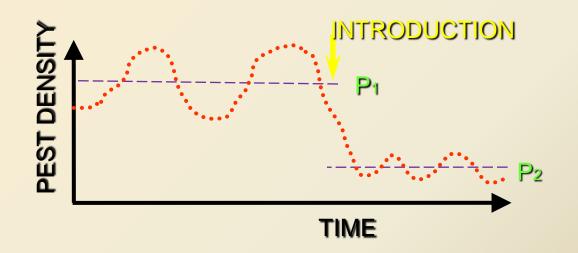
CA Dept Food & Ag

Methods of Weed Control

- Chemical
- Mechanical
- Cultural
- Biological

Factors controlling plant populations

- Abiotic limits (e.g. climate, frost, rainfall)
- Resources
- Seed germination microsites
- Plant competition
- Pollination
- Natural enemies (generalist & specialist)


Classical Biological Control

- Most common biological control method used against weeds
- It involves introduction of natural enemies from their native range into an exotic range where their host plant has become invasive.
- The objective is for the exotic natural enemy to become self-sustaining members of the herbivore community in the new area of infestation.

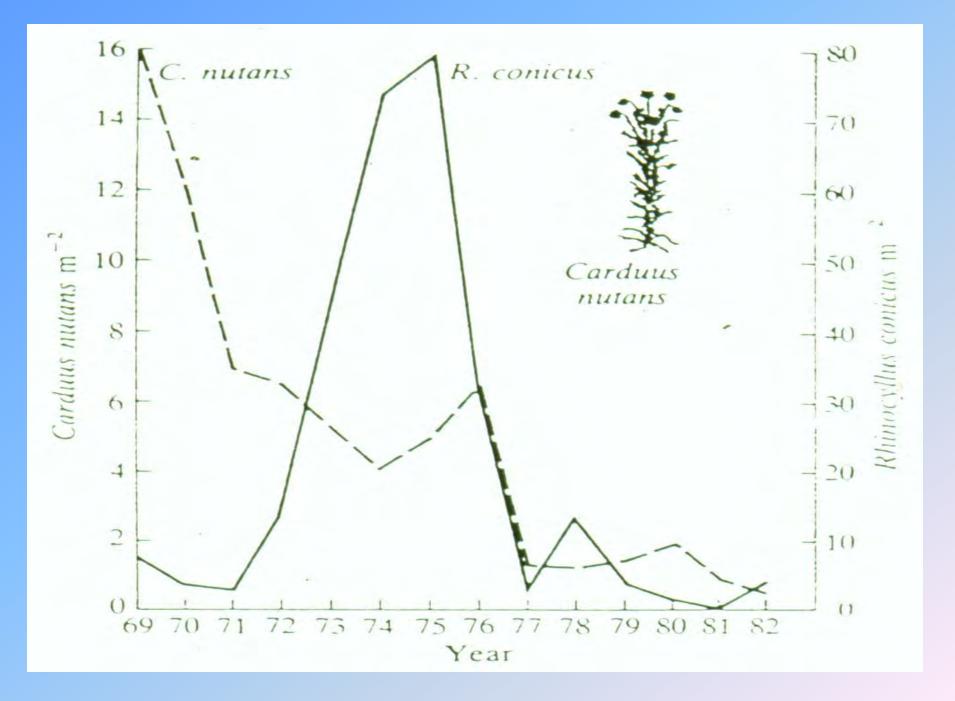
Many Exotic Weeds Are Without Natural Enemies

- Only clean ornamental & crop plants are transported and sold
- Plants accidentally introduced are commonly transported as seeds or rhizome fragments, pieces too small to support natural enemies
- The benefits of reduced natural enemy pressure for exotic plants is called the "Enemy Release Hypothesis of Invasion."

THEORY OF BIOLOGICAL CONTROL: Density dependent mortality lowers the average density of the weed population

Musk Thistle (Carduus nutans) Siskiyou County

Musk Thistle Control Agent


Seed Head Weevil

Adult

Larval Damage

Tansy Ragwort (Senecio jacobae)

Invasive weed of pastures, grasslands, rangelands Poisonous to cattle

Tansy Ragwort, Humboldt County Before After

Tansy Ragwort Control Agents Cinnabar Moth

Larvae

Adult

Tansy Ragwort Control Agents Flea Beetle

Adult

Larval Damage

Table 1. Tansy ragwort density (plants/ m^2) in Mendocino Co., California (adapted from R. W. Pemberton and C. E. Turner, 1990, Entomophaga 35: 71-77.)

Foresti Ranch ¹		Todd Point ²		Smith Ranch ³	
15.3	(1969) ⁴	53.3	(1966)	11.7	(1973)
0	(1975)	0.6	(1975)	0.5	(1975)
0	(1987)	0	(1987)	0.2	(1987)

¹the cinnabar moth was present since 1968, and the ragwort fleabeetle was introduced in 1968

 2 the cinnabar moth was introduced in 1966, and the ragwort fleabeetle was introduced in 1972

 3 the cinnabar moth was present in large numbers by 1975, and the ragwort fleabeetle was introduced in 1972

⁴fall sample years shown in parentheses

Advantages/Disadvantages

Advantages	Disadvantages
Target specificity	Initial high costs
Continuous action	Protracted time until impact likely
Cost effective long term	Uncertainty over ultimate scale of impact
Gradual in effect, environ-mentally non-intrusive	Uncertain 'non-target' effects in ecosystems
Self dispersing (even into difficult terrain)	Irreversible

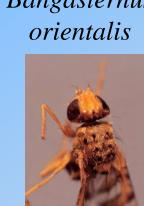
Klamath Weed

a poisonous exotic weed under biological control since 1946

Steps in a biological control program

Key to Effectiveness and Safety is High Host Specificity

- Substantially reduces or eliminates risks to non-target plants
- Provides a tight coupling between natural enemy and host plant so that impacts are not diluted to other species
- Provides density dependent mortality needed to stabilized population fluctuations

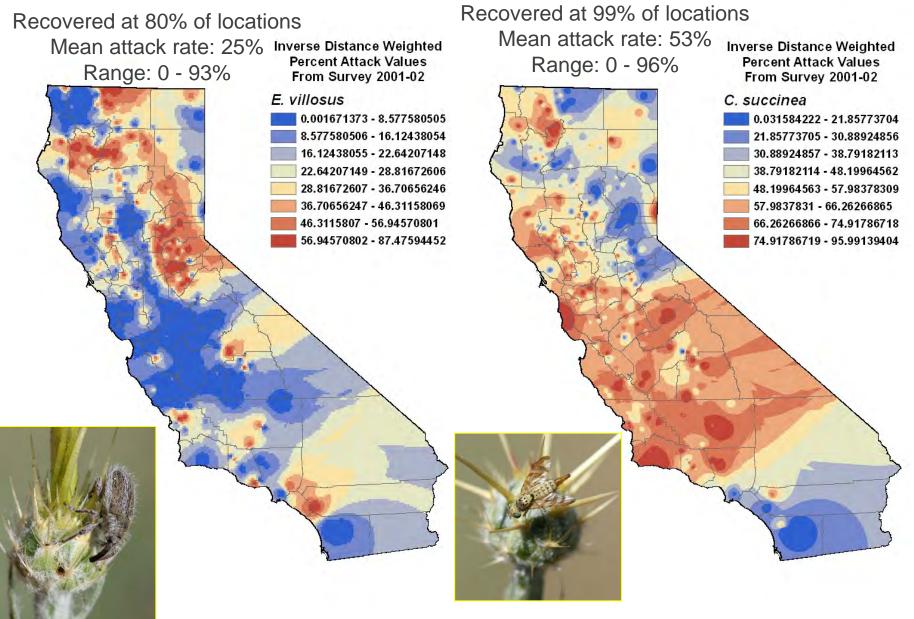

Yellow Starthistle Centaurea solstitialis

Urophora sirunaseva

Bangasternus orientalis

Larinus curtus Chaetorellia australis

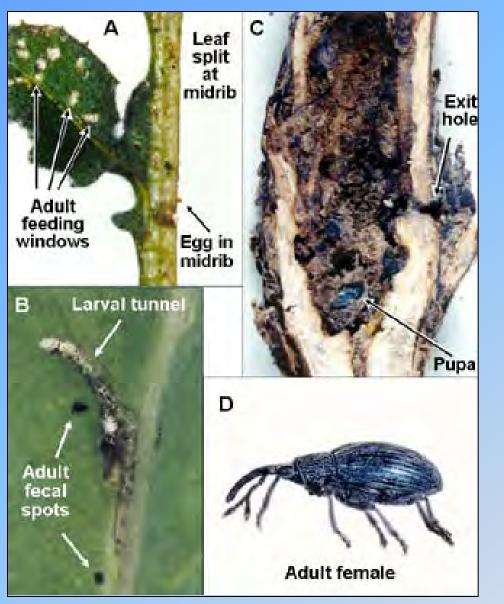
Eustenopus villosus

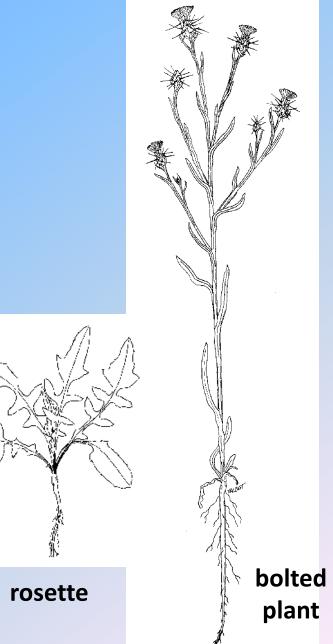

Chaetorellia succinea

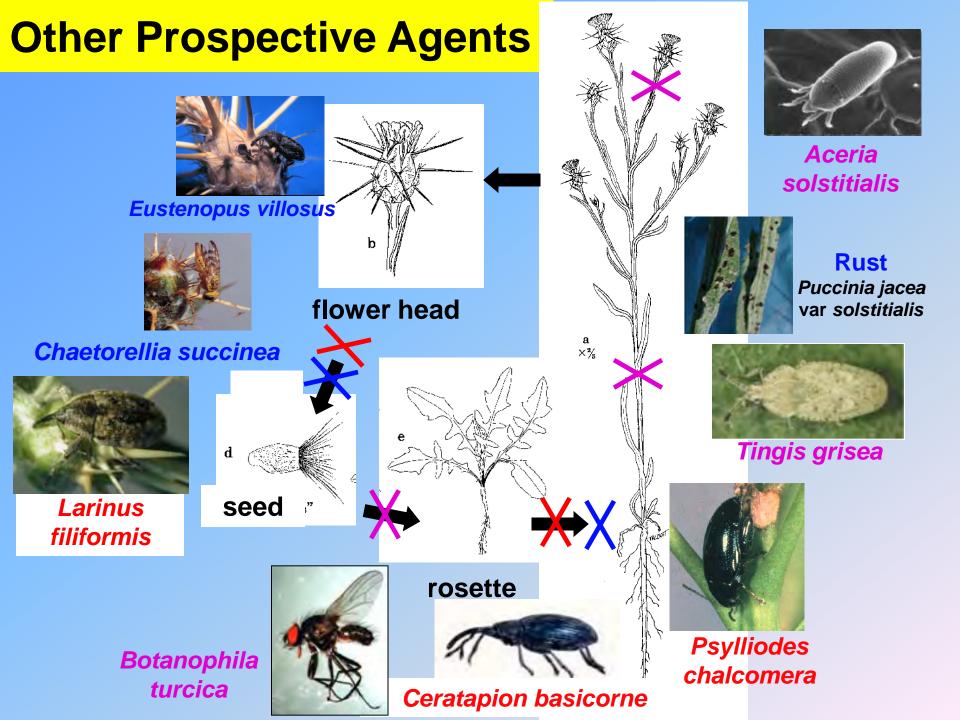
Hairy Weevil

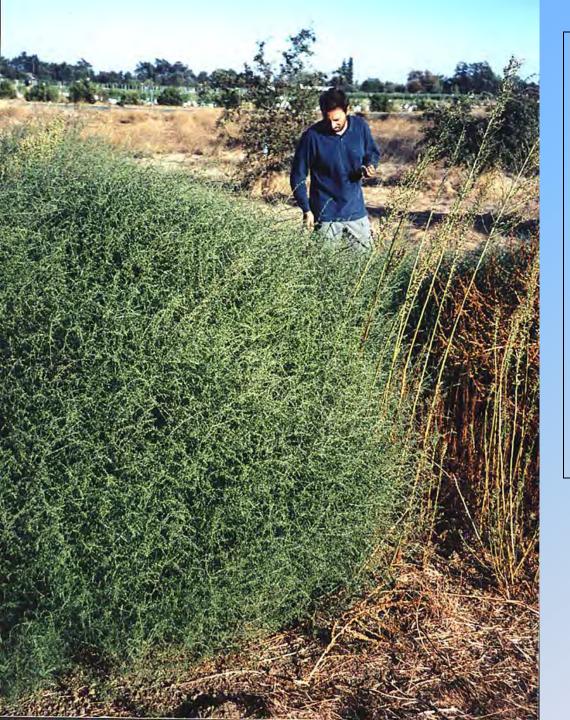
False Peacock Fly

R. Yacoub & M. Pitcairn (CDFA)


Yellow Starthistle, Sonoma County


Sept. 2003


Hairy weevil, false peacock fly & not grazed by cattle


Dale Woods, CDFA

Life Cycle of *Ceratapion basicorne* (Apionidae) YST rosette weevil

Russian thistle Salsola australis Salsola collina Salsola gobicola Salsola tragus Salsola ryanii Salsola paulsenii [not S. kali]

Hrusa & Gaskin. 2008. Madroño 55(2) 113– 131.

Russian Thistle Casebearer

Coleophora klimeschiella

Russian Thistle Stem Miner

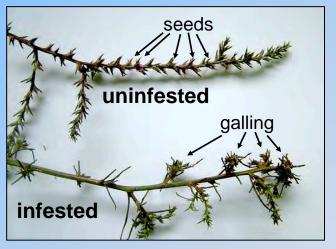
Coleophora parthenica

Russian Thistle Blister Mite

Aceria salsolae (Acari: Eriophyidae)

on human eyelash

scanning electron micrograph


Damage to Salsola tragus by Aceria salsolae

Impact of mite on Salsola tragus (Field Expt., Sept. 2007, Italy)

S. tragusS. tragus(uninoculated)(inoculated)

Inoculated plants had 20% the weight of uninoculated plants and no seeds

Smith et al. 2009. Biological Control 48: 237-243

Field Experiment in Rome, Italy

No damage to nontarget plants: Bassia hyssopifolia, Kochia scoparia, Suaeda calceoliformis

Future Agents for Russian thistle

- Blister mite, Aceria salsolae
- Seed-feeding caterpillar, Gymnancyla canella
- Weevils, Baris przewalskyi, Salsolia morgei, Kazakhstan
- Rust fungus, Uromyces salsolae, Turkey — petition to TAG 2009
- Fungus, Colletotrichum salsolae, Hungary — petition to TAG 2013?

M. Cristofaro, BBCA / ENEA, Rome, Italy
M. Dolgovskaya (Russian Academy of Sciences)
W. Bruckart, D. Berner, USDA-ARS, Frederick, MD

Cape ivy - (*Delairea odorata*)

Gall forming fly *Parafreutreta regalis* (Diptera: Tephritidae)

Petition submitted to APHIS in 2009 TAG recommended approval in 2012 APHIS processing permit application

Patrick Moran, Joe Balciunas (retired), Angelica Reddy, John Herr USDA-ARS, Albany

Leaf mining and stem boring moth Digitivalva delaireae (Lepidoptera: Plutellidae) **Petition submitted to APHIS in 2009 TAG recommended** approval in 2013 **APHIS processing permit** application

Patrick Moran, Joe Balciunas (retired), Angelica Reddy, John Herr USDA-ARS, Albany **French broom** (*Genista monspessulana*)

psyllid Arytinnis hakani

Evaluated for release in Australia.Kills Fr. broom in Australia.27 lupine species have been tested.Can develop on some lupines.Ongoing host specificity testing.

French broom killed by psyllid (Arytinnis hakani) in Australia

French broom (*Genista monspessulana*)

seed-feeding weevil (*Lepidapion* nr *argentatum*)

- Larvae feed inside seed pods.
- Adults eat flowers and pollen.
- Only found attacking French broom.
- Beginning to test in France.

Onopordum acanthium

Rosette weevil Trichosirocalus briesei

Seedhead weevil Larinus latus

Stem-boring weevil Lixus cardui

© 2007 Louis-M. Landry-

Evaluation of BC Agents for Arundo <u>Stem tip-galling wasp</u> *Tetramesa romana* - adventive in So. Cal.; released in northern CA in 2010; poss. established

Root- and stem-feeding armored scale Rhizaspidiotus donacis - first released in CA in 2013

Evaluation of the planthopper *Megamelus scutellaris* - a new biological control agent of water hyacinth

Releases have occurred at three sites in the California / Sacramento Delta

Rearing colonies

Invaded canal, Sacramento Delta

Field survey, Whiskey Slough

Future: Biological Control?

Altica litigata (Coleoptera: Chrysomelidae) Water flea beetle

Resident water flea beetle feeding on *Ludwigia hexapetala*, Delevan National Wildlife Refuge, and on *Ludwigia peploides* Gray Lodge Wildlife Area, Butte County 2009

Carruthers et al. 2011. Chemoecology 21:253-259.

Liothrips Iudwigi (Thysanoptera: Phlaeothripidae) Prospective Agent of Primrose-Willows Ludwigia hexapetala and L. peploides

Host specificity and potential impact are being studied in Argentina

Zamar et al. 2013. [A new Neotropical species of *Liothrips* (Thysanoptera: Phlaeothripidae) associated with *Ludwigia* (Myrtales: Onagraceae).] Revista de la Sociedad Entomológica Argentina vol.72 no.1-2.