

MUTUALISM BETWEEN NATIVE AND NON-NATIVE SPECIES:

GLOBAL TRENDS AND CALIFORNIAN CASE STUDIES

Clare E. Aslan, Arizona-Sonora Desert Museum Benjamin Sikes, University of Texas-Austin Keryn Bromberg Gedan, Smithsonian ERC Marcel Rejmánek, University of California-Davis Rob Klinger, US Geological Survey

California Invasive Plant Council; Rohnert Park, CA October 12, 2012

Presentation Outline

- Mutualism background
- Novel mutualisms in three systems
 - Common characteristics
 - Key patterns
 - Knowledge gaps
- Bird dispersal of non-native plants
 - Dispersal limitation
 - Targeted high-efficiency spread detection
 - Riparian invaders

Mutualisms: Background

Interactions between species in which both participants experience fitness boosts

How do mutualisms arise?

How do mutualisms arise?

Mutualisms and non-native species

Dr. Keryn Gedan, SERC

Dr. Ben Sikes, UT-Austin

- Marine patterns
 - Long-distance dispersal
 - Strong top-down effects

- Belowground patterns
 - Heterogeneity of resources
 - Limiting transportation

- Aboveground patterns
 Limiting transportation
 - Competition

Novel mutualism characteristics

Facultative

• Diffuse

Free resources

Key patterns emerging

- Aboveground examples
 - Seed dispersal: Himalayan blackberry
 - Pollination: Yellow starthistle, iceplant
 - Shared attraction: Camphor tree
 - Ant protection: Cecropia
- Belowground
 - Mycorrhizal fungi-root relationships: Spotted knapweed
- Marine
 - Native Diopatra polychaete-Non-native Gracilaria alga

- Marine patterns
 - Long-distance dispersal
 - Strong top-down effects
 - → Protective mutualisms

- Belowground patterns
 - Heterogeneity of resources
 - Limiting transportation
 - Nutritional mutualisms

- Aboveground patterns
 - Limiting transportation
 - Competition
 - → Reproductive mutualisms

Mutualisms provide access to limiting resources and a competitive edge

- Information gaps
 - Marine???
 - Microbial mutualisms

- Take-home messages
 - Novel mutualisms are common
 - Non-native species can benefit
 - Limiting factors guide frequency
 - Typically facultative and diffuse
 - Research gaps remain

Case study:

Bird-mediated seed dispersal of non-native plants in California

Fleshy-fruited plants and birds

Dispersal limitation

38,462

10,642

712,820

105,983

1	Proportion removed	
	Chinese tallow: 24%	
11	Olive: 88%	
	Privet: 77%	
	Toyon: 94%	

From frugivory to spread

Image by Kayla Etheridge & Christina Beck

From frugivory to spread

Photo credit: University of Illinois

Directed Dispersal

American Society of Landscape Architects

Examples: Chinese tallow, European olive, and glossy privet

Chinese tallow	European olive	Glossy privet	
European starling	European starling	Cedar waxwing	
American robin	Western-scrub jay	American robin	
Northern flicker	Western meadowlark	Northern mo	
Nuttall's woodpecker	American robin	Hermit thrus	
Western-scrub jay	Wild turkey	Northern flic	
Northern mockingbird	Western bluebird	Yellow-rump	CE E
American crow	Northern mockingbird	Western-scri	
Cedar waxwing	American crow	American cro	
Hermit thrush	Hermit thrush		File File
Black phoebe		The Print Print	

b) the other next properties gate were same. When the activates and its service power introduction where any and the service and antipological stationers and content and the service output the term.

Chinese tallow (Triadica sebifera)

- Bird-dispersed and water-lovin'
- Riparian area growth

Bower et al. 2009. Inv. Plant Sci. Man.

Chinese tallow

• Barrier detection?

Potential barrier to invasion	Detected?
Seed production	No
Seed transport by dispersers	No
Seed germination	Not along waterways
Seedling survival	Not along waterways

Apparent invasion potential along waterways: High

Bower et al. 2009. Inv. Plant Sci. Man.

Glossy privet (Ligustrum lucidum)

- Bird-dispersed and water-lovin'
- Irrigated area growth

Aslan, Rejmánek, and Klinger. 2012. J. Appl. Ecol.

Glossy privet

Barrier detection?

Potential barrier to invasion	Detected?
Seed production	No
Seed transport by dispersers	No
Seed germination	Not along waterways
Seedling survival	Not along waterways

Apparent invasion potential along waterways: High

European olive (Olea europaea)

Bird-dispersed and upland

Aslan, Rejmánek, and Klinger. 2012. J. Appl. Ecol.

European olive

Barrier detection?

Potential barrier to invasion	Detected?
Seed production	No
Seed transport by dispersers	No
Seed germination	Low?
Seedling survival	Low?

Apparent invasion potential along bird dispersal pathways: Low at landscape scale... but high in certain sites

Detecting spread of fleshy-fruited exotics

- Something will eat them
- Track likely dispersal paths
- Target habitat
- Early detection, rapid response
- Source population focus

Bird dispersal as key

- Under certain circumstances
- When to think about it
- Why to think about it

Thank you! Marcel Rejmánek Rob Klinger • Rejmánek Lab Land use permissions: Putah Creek Riparian Reserve, Bidwell Park, City of Davis Interns and volunteers! Countless wise advisors. David H. Smith Conservation Research Fellowship National Science Foundation

Questions