How Will Tamarisk Biocontrol Affect Wildlife?

T. Dudley, Mike Kuehn & Iwona Kuszinska (UCSB), Matt Brooks & Steve Ostoja (USGS), Heather Bateman (Arizona St. U), Dan Bean (Colo Dept of Ag), et al. and a Cast of Millions...of beetles

Tamarix spp. occupy >1 million acres in No. America
 Tamarix is the 3rd most common woody plant in Western riparian areas (Friedman et al. 2005)

Ecosystem Impacts of Tamarix

Displaces native riparian plants

High water transpiration

Desiccates & Salinates soils

Biodiversity Impacts of Tamarix

Humboldt Walker Owens

Insectivorous songbirds reduced,

Specialists (e.g. cavity nesters, frugivores) mostly absent (Anderson & Ohmart 1984, Yong & Finch 1997, Ellis 1995, Shafroth et al. 2005)

Herpetofauna lower in saltcedar-dominated communities (Jakle & Gatz 1985, Konkle 1996, Szaro & Belfit 1986)

birds native

birds tamarisk

Conventional control – Expensive/Unsustainable

Collateral damage to natural resources

Disturbance promotes other 2° weeds

Salsola spp. (Russian thistle)

Biocontrol as Cost-Effective, 'Safe' Alternative Initiated in 1970's - 3 candidates approved in 1996

Diorhabda 'elongata' (saltcedar leaf beetle) from central Asia (now D. carinulata)

Coniatus tamarisci (weevil)

Trabutina mannipara (mealy bug)

Southwestern Willow Flycatcher (SWFL) (*Empidonax traillii extimus*) listed as Endangered Species in 1995

Cause for listing: Loss of Cottonwood/Willow vegetation across Southwest *Tamarix* Invasion listed as major factor in decline Can nest in *Tamarix* – Approx 1% occupied (parts of Arizona, New Mexico, Nevada, Utah)

Biocontrol Program halted by US-FWS for ESA Section 7 Consultation

- Defoliation could expose nest to excessive heat
- Biocontrol may eradicate target too fast for native regeneration
- Habitat too degraded for natives

• Beetles may be toxic

Cage tests in 1999

Open release 2001: *D. carinulata* from China (12 sites)

Humboldt River (NV) in 2002

Defoliation rapid -'scraping' tissue causes desiccation

June 26

Population Expansion 2003: 2 ha. ↑ to 200 ha. 2004: >10,000 ha. colonized

A 2 10 2 100 - COL

But, Re-growth is Rapid Dieback gradual & Mortality low

Survival at Release Site

Survival 4 km from Release Site

Higher Trophic Level Response

Introducing a new trophic level (Primary Consumer) promotes higher trophic levels (Predators)

Birds and *Diorhabda* in Tamarisk (Longland et al.)

Diorhabda present

Diorhabda absent

bushtit vellow warbler sage sparrow Bullock's oriole Say's phoebe Townsend's warbler black-bill magpie lark sparrow western kingbird western meadowlark warbling vireo Bewick's wren blue grosbeak brown-head cowbird raven blue-grey gnatcatcher spotted towhee lazuli bunting

Ecosystem Benefits

Seasonal Evapotranspiration $\downarrow 65\%$ Yr 1, $\downarrow >90\%$ Yr 2 (Pattison et al.)

1000

Vegetation Recovery

Suppression allows native release and recruitment (Sevier R. - Delta, UT)

Diorhabda introduced in 2006 to St. George, UT by county agents

Tamarisk defoliation in Virgin River in 2008

Diorhabda now in contact w/ SWFL

Spread and Defoliation can be Rapid & Dramatic

Virgin River: Before/After Biocontrol

Beetle # / Sample

• Absent (0)

ow

- Infrequent Individuals (1 5)
- Small Establishment (6 25)
- Large Establishment (26 500)

Lake Powell

Ovals = SWFL nesting

10 20

30

15

80

120

90

60

Lower Colorado River

/irgin R

2009

NOT WANTED IN ARIZONA: TAMARISK LEAF BEETLES

Tamarisk beetles at St. George, Utah Credit: Mary Ann McLeod, SWCA Assoc

Tamarisk beetle defoliation below St. George, Utah

Credit: Christiana Manville, U.S. Fish & Wildlife Service

Southwestern willow flycatcher nest in defoilated tamarisk on Virgin River, St. George, Utah

Credit: Pam Wheeler, Utah Division of Wildlife Resources

"Biological war wreaks havoc on endangered bird's habitat"

Associated Press

CENTER for BIOLOGICAL DIVERSITY

CBD sues USDA over perceived threats to SWFL

US Fish & Wildlife Service campaign poster

Does Biocontrol by Diorhabda pose a Threat?

Or, will 'Willow' Flycatcher survive without 'Willows'?

Trend is toward *Tamarix* dominance Mortensen et al. 2009, Whiteman 2009

Riparian Ecosystems are not static

90% of nests in Native or Mixed Native/Exotic Veg Sogge et al. 2005 Absent from *Tamarix* Monocultures

Tamarix Dominance increases fire threat to native riparian veg "21 of 25 saltcedar stands on the lower Colorado River burned in a 15-year period"

(Anderson et al. 1977)

...and to wildlife, e.g. SWFL -2 unfledged nests destroyed

Does Willow recovery benefit SWFL?

Elephant Butte, Rio Grande NM

"Hubbard (1987) found 55% of 20 nests in New Mexico to be in tamarisk...all from Elephant Butte Reservoir...and the sub-species no longer even occurs at Elephant Butte."

Willow & Cottonwood recovery at E.B. Reservoir

More Willows => More Flycatchers

Nesting in Veg Types

(Ahlers & Moore 2009)

Similar response at Roosevelt Lake (Salt River) with SWFL recruitment to newly established willows after flooding

Tamarisk is not a preferred veg type, but can be an acceptable element

Need strategies to inhibit dominance and encourage natives – with disturbance [flood, fire, livestock]

Biocontrol can promote Native Diversity

Will active Re-vegetation lead to SWFL colonization?

Restoration projects in Virgin River Watershed: 2008 – 2010 (*Diorhabda* present)

Virgin River: St. George, UT With Willow Re-vegetation (Utah Dept of Wildlife, M. McLoed)

2009 - 10 females (one in Native, 9 in tamarisk-dominated sites)
<u>13%</u> of nests fledged; 40% failed to hatch
2010 - 9 females (major shift to native-dominated sites)
<u>30%</u> successfully fledged

≥USGS

Threshold response by warblers to introduced vegetation Point count data (van Riper et al.)

Arthropod Abundance on Mixed Vegetation vs. Monocultural Tamarisk

Honey Mesquite Flower Phenology

Abundance

Warbler

Relative

Warblers Cued to Mesquite Flowering Tamarisk Use is Incidental

Virgin River Point Count Surveys

Relative Abundances: Mixed versus Tamarisk Habitats

• 6 of 11 species lower in *Tamarix*, including Yellow Warbler (SWFL proxy)

Key: Retain or Restore Native Veg Element

Small Mammal Captures by Species in each Habitat Type

Bu Monotypic Mixed

ASTI

SCN

UTST

URGR

Mixed
Tamarix

Propagule Islands Restoration Strategy

1 ASPA

1.25

10 Kilometers

7.5

Enhancing relative abundance of native plants, by BioControl, and Restoration where needed, will: 1.Improve wildlife abundance & diversity 2.Reduce wildfire risk & ecological impacts 3.Improve ecosystem function & services 4.Allow USDA and FWS to resolve ESA Conflict

Biodiversity on Golf Courses?

Or back in our Rivers?

Xinjiang, China

Phainopepla

Photo by Jim Stasz

Sensitive species rare or absent in *Tamarix*-dominated habitats

Yellow breasted chat

Western pond turtle-

Southwestern toad

Yellow billed cuckoo

Common yellowthroat

Summer tanager

Photo by Stuart Tingley

Photo by Jim Zingo