Divergence in acquisition and allocation patterns among native and introduced populations of an annual grass contribute to invasiveness

Matt R. O'Neill, Edith B. Allen, Louis S. Santiago and Michael F. Allen. Department of Biology, University of California, Riverside, CA, 92521

Background

Impacts:

Community diversity

Disturbance

ehleringer.net

Background

Background

"Are invasive species born or made?"

- Ellstrand and Schierenbeck 2000

Born?

- Enemy Release
- Propagule pressure
- Increased resource availability

Made?

- Hybridization
- Local adaptation
- Evolution of increased competitive ability

Has post-introduction adaptation occurred in introduced populations?

Do such adaptations confer any competitive superiority?

Methods

Methods

Carbon acquisition

Maximum e⁻ transport rate - photosynthetic capacity at saturating light

Yield of photosystem II -photosynthetic activity per light received

Predictions

	Introduced	Native
Shoot height	^	\mathbf{h}
Leaf number	↑	\checkmark
Total mass	↑	\checkmark
Root:shoot mass (RSM)	↓	1
Shoot mass ratio (SMR)	^	\mathbf{h}
Root mass ratio (RMR)	↓	1
Specific leaf area (SLA)	^	\mathbf{h}
Total leaf area	↑	\mathbf{h}
Leaf mass ratio (LMR)	^	\mathbf{h}
Leaf area ratio (LAR)	1	$\mathbf{1}$
Yield of PSII	1	$\mathbf{1}$
Maximum e ⁻ transport rate	1	\checkmark

Greater investment and variation in leaf mass in Madrid population

Greatest total biomass in introduced population

CA pop. primarily differs from native pop.'s based upon **photosynthesis** and **biomass**

Variable	PCA 1	PCA 2
ETR _{max} (µmol m ⁻² s ⁻¹)	0.445	0.145
φ _{PSII} (μmol m⁻² s⁻¹)	0.457	0.123
NPQ	0.340	-0.404
qP	0.489	-0.119
qN	0.329	-0.435
Total mass (g)	-0.207	-0.550
No. of leaves	-0.315	-0.660
Leaf mass (g)	-0.286	-0.450

Results: Summary

	Introduced	Native	Agreement
Shoot height	1	\checkmark	\checkmark
Leaf number	1	. ↓	X
Total mass	↑	\mathbf{V}	\checkmark
Root:shoot mass (RSM)	\bullet		ND
Shoot mass ratio (SMR)		\checkmark	ND
Root mass ratio (RMR)	\bullet		ND
Specific leaf area (SLA)	↑	\checkmark	ND
Total leaf area	^	\mathbf{V}	\checkmark
Leaf mass ratio (LMR)	1	.↓	×
Leaf area ratio (LAR)	↑	\checkmark	ND
Yield of PSII	1	♥	×
Maximum e ⁻ transport rate	1	•	×

Has differentiation occurred in the introduced range?

Adaptations that confer competitive superiority?

CA pop. consistently out competes native pop.'s

Adaptive trade-off of leaf size to photosynthetic capacity along a latitudinal gradient?

Larger biomass may be an indirect result of selection on photosynthetic physiology

Conclusion

Invasive populations: adaptive capacity, competitive ability, abiotic factors

Next steps...

1.) Identify source populations and quantify genetic variation

2.) Investigate biogeographical variation in plant-soil feedbacks

Thank You!

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.