Invasive legume symbioses: Do California invasions follow worldwide trends?

Kimberly La Pierre, Stephanie Porter, and Ellen Simms University of California, Berkeley Cal-IPC 2014 How do species interactions influence invasion success?

Mutualists enter into symbiotic, mutually beneficial relationships

- Mutualists enter into symbiotic, mutually beneficial relationships
- Symbiotic partnerships may allow invaders to overcome environmental or biotic barriers to invasion

- Mutualists enter into symbiotic, mutually beneficial relationships
- Symbiotic partnerships may allow invaders to overcome environmental or biotic barriers to invasion
- Lack of symbionts may be a barrier to invasion

Pea family

- Pea family
- widespread invaders

- Pea family
- widespread invaders
- problematic in many habitats

- Pea family
- widespread invaders
- problematic in many habitats
- displace native species

- Pea family
- widespread invaders
- problematic in many habitats
- displace native species
- alter N-cycling

 rhizobial bacteria infect legume roots, forming nodules

- rhizobial bacteria infect legume roots, forming nodules
- nodulated rhizobia fix N from the atmosphere

- rhizobial bacteria infect legume roots, forming nodules
- nodulated rhizobia fix N from the atmosphere
- rhizobia trade N to the legume in exchange for C

- rhizobial bacteria infect legume roots, forming nodules
- nodulated rhizobia fix N from the atmosphere
- rhizobia trade N to the legume in exchange for C
- this symbiosis allows legumes to differentiate their N-niche from nonlegumes

 rhizobia are not maternally transferred

- rhizobia are not maternally transferred
- legume seedlings must be infected by rhizobia from the soil environment

- rhizobia are not maternally transferred
- legume seedlings must be infected by rhizobia from the soil environment

Native Range

Native Range

Invasive Range

Native Range

Invasive Range

Native Range

Invasive Range

Questions

(1) Do invasive legumes form novel associations in their exotic range?

Or do invasive legumes co-invade with their familiar rhizobial associates?

Questions

- (1) Do invasive legumes form novel associations in their exotic range?
 - Or do invasive legumes co-invade with their familiar rhizobial associates?
- (2) Are invasive legumes more general in their rhizobial associates than native legumes?

Study Systems

Study Systems

(1) Local Scale

(2) Global Scale

(2) Global Scale

Genista monspessulana (French broom)

Spartium junceum (Spanish broom)

Lotus angustissimus (Slender Bird's Foot Trefoil)

Genista monspessulana (French broom)

Spartium junceum (Spanish broom)

Ulex europaeus (Gorse)

Lotus angustissimus (Slender Bird's Foot Trefoil)

Genista monspessulana

Spartium junceum

Ulex europaeus

Lotus angustissimus

Acmispon heermannii A. micranthus

NATIVE

Lupinus arboreus

Lu. bicolor

241 native isolates 301 invasive isolates sequenced at 16S and ITS loci 54 unique strains

Questions – Bay Area

(1) Do invasive legumes form novel associations in their exotic range?

Or do invasive legumes co-invade with their familiar rhizobial associates?

(2) Are invasive legumes more general in their rhizobial associates than native legumes?

NMDS – invasive and native legumes do not share rhizobial strains

Where do Bay Area invaders get their rhizobia?

Where do Bay Area invaders get their rhizobia?

	% overlap with natives	% European strains
<i>L. angustissimus</i> (Slender Bird's Foot Trefoil)	100	
<i>G. monspessulana</i> (French broom)	47	
S <i>. junceum</i> (Spanish broom)	38	
<i>U. europaeus</i> (gorse)	20	

Where do Bay Area invaders get their rhizobia?

	% overlap with natives	% European strains
<i>L. angustissimus</i> (Slender Bird's Foot Trefoil)	100	0
<i>G. monspessulana</i> (French broom)	47	71
S <i>. junceum</i> (Spanish broom)	38	75
<i>U. europaeus</i> (gorse)	20	75

Invasive legumes coinvade with their rhizobial symbionts.

Questions – Bay Area

1) Do invasive legumes form novel associations in their exotic range? No.

Or do invasive legumes co-invade with their familiar rhizobial associates? Yes.

(2) Are invasive legumes more general in their rhizobial associates than native legumes?

```
Number of Strains
```


Number of Strains

Phylogenetic Diversity of Strains

Number of Strains

Phylogenetic Diversity of Strains

invasive legumes are not more general than native legumes

(2) Global Scale

Study Systems

(1) Local Scale

(2) Global Scale

Global Meta-Analysis

- collected 53 papers
- 19 comparing overlap in rhizobial associates of native vs invasive plants
- 34 comparing the rhizobial associates of an invader in home and away regions

novel associations in exotic range?

co-invade with symbionts?

Bay Area	Global
no	
yes	
no	
no	

novel associations in exotic range?

co-invade with symbionts?

Bay Area	Global
no	no
yes	
no	
no	

novel associations in exotic range?

co-invade with symbionts?

Bay Area	Global
no	no
yes	yes
no	
no	

novel associations in exotic range?

co-invade with symbionts?

Bay Area	Global
no	no
yes	yes
no	no
no	no

- The theory that invaders should be generalists in their mutualisms was not supported.
- Invasive legumes do not appear to take advantage of the existing rhizobial community during invasion.

- The theory that invaders should be generalists in their mutualisms was not supported.
- Invasive legumes do not appear to take advantage of the existing rhizobial community during invasion.
- What other factors might make invasive legumes so successful?

- The theory that invaders should be generalists in their mutualisms was not supported.
- Invasive legumes do not appear to take advantage of the existing rhizobial community during invasion.
- What other factors might make invasive legumes so successful?
 - Can invaders extract greater benefit from their rhizobial symbionts than natives?

 Encourage best practices to reduce introductions of soil micro-organisms.

- Encourage best practices to reduce introductions of soil micro-organisms.
- Rhizobial community may be important in reinvasion of areas where invasive legumes have been removed.

- Encourage best practices to reduce introductions of soil micro-organisms.
- Rhizobial community may be important in reinvasion of areas where invasive legumes have been removed.
- Rhizobia should be considered in restoration efforts.

Acknowledgements

- Field and Lab Assistance:
- Sriya Maram
- Land Access:
- Joe Colliss Colliss Ranch
- Romburg Tiburon Center
- Bodega Marine Reserve
- Sonoma Coast State Park
- Boyd Memorial Park
- Horse Hill State Preserve
- Cascade Canyon State Preserve

Simms Lab

Funding:

Questions

kimberly.lapierre@berkeley.edu

Network metrics – no difference between native and invasive legumes

	Native	Invasive
Mean # shared partners	3.833	2.500
Niche overlap	0.312	0.320
Connectance	0.342	0.368
Weighted Nestedness	0.112	0.382
Interaction Strength Asymmetry	-0.295	-0.333
H2 (specialization)	0.482	0.361

• Sequenced:

- 542 isolated strains at ITS locus

Host	Isolated Strains	
Lo. angustissimus	14	 ר
G. monspessulana	100	
S. junceum	83	Invasive = 301
U. europaeus	104	
A. heermannii	61	7
A. micranthus	24	
A. strigosus	111	Native = 241
Lu. arboreus	22	
Lu. bicolor	23	

- identified 53 unique rhizobial strains

- Tree construction:
 - using Bayesian inference in MrBayes 3.2
- Q1: PERMANOVA (PRIMER), network analysis (R bipartite)
- Q2: Chao richness (estimateS), NRI/NTI (R picante)

Strain Phylogenetic Diversity – no difference in the evolutionary diversity of strains associated with native and invasive legumes

Where do invasive legumes get their rhizobia?

Strain Richness – invasive legumes do not associate with more strains than native legumes

NRI & NTI – no difference in the phylogenetic diversity of strains associated with native and invasive legumes

