

Edge effects: native and exotic plant distribution on single and multi-use trails in Santa Monica Mountains National Recreation Area, California

Eric Esby, Department of Intercollege Programs for Science Education, Montana State University, Bozeman, MT

Irina C. Irvine & Christy Brigham, National Park Service, Santa Monica Mountains National Recreation Area, Thousand Oaks, CA

Background

- ♦ Recreational impacts on surrounding biotic communities are dictated by trail usage
 - ♦Hiking,
 - ♦Biking,
 - ♦ Horseback riding
- ♦ Disturbance from repeated trail use can contribute to:
 - ♦Introduction of exotics
 - **♦**Reduction in leaf litter
 - ♦ Change in drainage patterns
 - ♦Soil erosion

Multi-use trail in coastal sage scrub

♦Identifying impacts could inform land managers about where to construct future trails in least impacted ecosystems

♦Undisturbed vegetation ("interior") can be used for comparison when assessing changes along the trailside ("edge")

♦ Deluca, et al. (1998) and Olive and Marion (2009) suggest type of use, not level of use, has greater impact

Study Area

♦SMMNRA protects the greatest expanse of Mediterranean ecosystem in the US (154,000 acres)

→Mediterranean ecosystem accounts for2.2% of the Earth's land surface, yet has20% of all known plant species

♦SMMNRA is a mosaic of private and public lands managed jointly by NPS, the California Department of State Parks, and non-profit agencies

Map of SMMNRA

2 Dominant Native Communities:

Northern mixed chaparral (51%)

- \diamond 2-4 m tall with deep roots
- ♦little understory

Coastal sage scrub (CSS) (33%)

- \diamondsuit 0.5-2 m tall
- ♦ drier substrates & lower elevations

Trail Type

The NPS designates:

♦Single-use trails = hikers only

♦ Multi-use trails = mtn. bikers, hikers, equestrians

> ♦Impacts from equestrians tend to be more localized and extreme than those caused by hikers

♦ Detailed comparisons between users on multi-use trails are rarely possible

Single-use trail 0.95 ± 0.39 m Chaparral

Multi-use trail $2.6 \pm 1.6 \text{ m}$ CSS

- 1. Will trailside (edge) vegetation have more exotic species (species richness and abundance) than interior vegetation on single and multi-use trails?
- 2. Will chaparral or CSS communities for each trail type exhibit differential diversity and composition due to their differences in litter cover?

Methods

- \diamondsuit 1 m² plots to estimate:
 - ♦ species richness
 - ♦% cover
 - ♦% cover leaf litter
 - ♦% bare soil

- ♦16 trails sampled Aug 2010 (N=128),
- ♦8 trails sampled (CSS only) Aug 2011 (N=64)
- ♦Paired sites shared similar topography

Trail sites selected. #1,2,3, 8 – CSS. #4,5,6,7 – Chaparral. Red – Single Use. Black – Multi Use.

Mean Species Richness

Site Level Effects:

Difference of Species Richness (Edge – Interior)

Plot level:

- ↑ numbers at edge or ↓ numbers in the interior
- ◆ numbers at edge or ↑ numbers in the interior
- ♦ Chaparral similar pattern in native and exotics in both trail types
- ♦ CSS showed a larger difference in mean exotic richness

Difference in Percent Cover of Natives vs. Exotics

CSS:

 \diamond 91% \uparrow in the # of exotics

♦98% ↑ in % exotic
cover on edges in multiuse trails compared to
single-use

Mean Percent Cover of Exotics

SUMMARY: COASTAL SAGE SCRUB

♦The # of (P<0.0001) and % cover of (P=0.0008) exotics depends on both trail use and vegetation type:</p>

♦A ≥91% ↑ proportion of exotics on edges in CSS multi-use than in CSS single-use in both ‡ of and % cover

SUMMARY: CHAPARRAL

♦31% ↑ in ♯ of exotics on edges in multi-use compared to single-use

♦% cover of exotics 16%

on edges in multi-use compared to single-use

♦% cover of natives 30% ↑ on edges in single-use compared to multi-use

♦Single-use had <50%
in both the #
of and % cover of exotics (P<0.0001) on
edges compared to multi-use
</p>

Interior vs. Edge Litter Cover

♦Interior: >40% ↑ in mean % litter cover compared to the edge (P<0.0001)</p>

♦Interior chaparral both trail-use types and the interior of CSS on single-use had higher mean % litter cover than the interior of CSS on multi-use

♦ Chaparral >60% ↑ mean % litter cover than CSS edges (P=0.0176)

Mean Percent Cover of Dominant Exotics

Mean % cover of species ≥ 5% in both trail and vegetation types included

Conclusions

♦At plot and site level there were significant differences between edge and interior with similar patterns, reinforcing findings of other researchers

♦ Multi-use trails may require more maintenance than single-use trails, but schedules are inconsistent so difficult to determine whether maintenance would have an effect on the presence of exotic species

♦The lower percent litter cover in CSS in comparison to chaparral may influence its susceptibility to invasions by exotics

Conclusions

♦ CSS, where a majority of annual grass was identified, it is drier than chaparral, making it susceptible to competition for available water as suggested by Eliason and Allen (1997)

♦ CSS habitat could be impacted during its germination period by lower litter cover and the presence of annual grasses

Management Implications

- ♦ Concentrate multi-use trails in chaparral rather than CSS
- ♦Step towards understanding trail placement to conserve native biodiversity while balancing the needs of the visiting public

Acknowledgements

- **♦Walt Woolbaugh**
- ♦ Peggy Taylor
- **♦Bruce Maxwell**
- **♦**Andrew Shultz
- **♦**Adam Brown
- **♦**Countless NPS employees

