Managing California rangelands: implications of weather patterns on plant composition

Joan Dudney, Loralee Larios, Lauren Hallett, Erica Spotswood and Katharine Suding University of California, Berkeley

Overview

Background

Study description

Results

Broader applications

Rangelands & climate change

Source: http://casoilresource.lawr.ucdavis.edu/drupal/node/804

What We Know

Precipitation = grass year
Temperature and timing matter

Questions

1. Functional groups: how do functional groups respond to annual weather and seasonal weather?

2. Lagged effects: how does previous year's weather affect current year abundance?

Exotic Forbs

Methods

Vasco Caves

Pleasant Ridge

Sunol Regional

Five Functional Groups

Multiple regression models

4 models per functional group with current and lagged weather:

Model 1: Annual weather

Model 2: Fall weather

Model 3: Winter weather

Model 4: Spring weather

Overview

Background

Study description

Results

ME

Broader applications

Fall weather

Lagged weather seems particularly important

Lagged weather patterns drive abundance patterns

Winter Weather

Precipitation and minimum temperatures drive winter responses

Lagged effects & current weather equally important

spring weather

Lagged precipitation and current temperatures drive spring functional group response

Current and lagged weather equally important

What We Know Now

lagged effects = weather + indirect effects

community composition= current effects + lagged effects

Overview

Background

Study description

• Results

MA

Broader applications

Environmental niche

Hotter, drier **Colder, wetter**

Exotic Annual Forbs

Native Perennial Grasses

Native Perennial Forbs

Native Annual Forbs

Exotic Annual Grasses

Climate change and functional groups?

Managing for production

Functional Group	Fall	Winter	Spring
Exotic A. Grass	Warm Lagged Temp	Low Precip, Low Temp	High Precip, Mild Temp
Exotic A. Forb	Low Precip, Extreme Temps	Mild Temp	Low Precip, High Temp

Managing for diversity

Functional Group	Fall	Winter	Spring
Native A. Forbs	-	High Precip	Low Rainfall, Low Temp
Native P. Forbs	Lagged High Precip	Low Precip + Low temp	-
Native P. Grasses	High Precip and more Extreme Weather	Low Precip & Low temp	-

Thank you!!

Dr. Emily Farrer, Dr. James Bartolome, Bartolome's lab, Dr. Suding's lab, URAP students, and East Bay Parks

