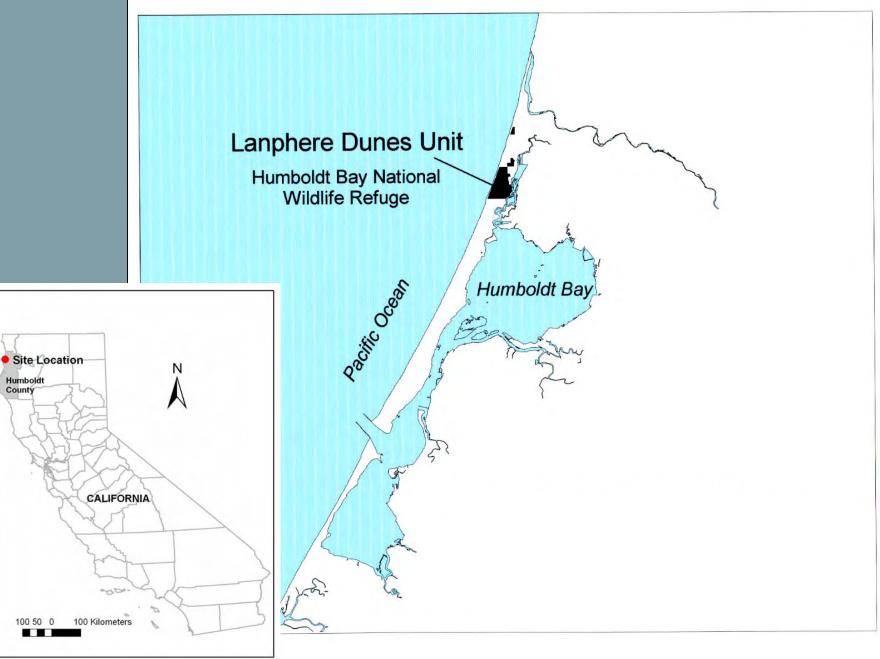
Removing Exotic Annual Grasses From Coastal Dunes: Effects on Native Solitary Ground-nesting Bees

Ellen Tatum Pimentel Humboldt State University ert3@humboldt.edu

Presentation Outline


Introduction

Research Objective & Hypothesis

Methods

Results and Discussion

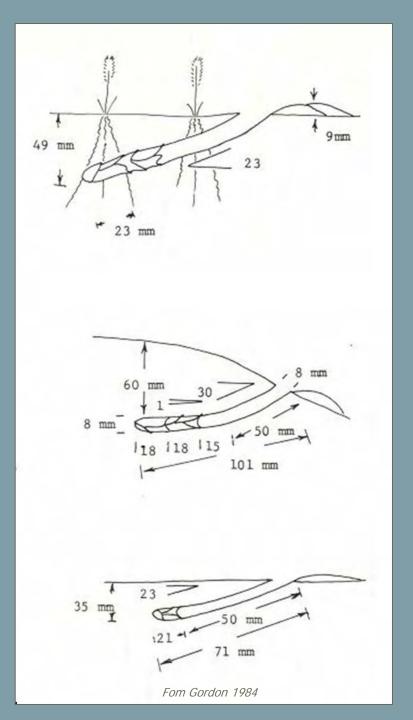
European hairgrass (Aira praecox)

Silver hairgrass *(Aira caryophyllea)*

Squirreltail fescue (*Vulpia bromoides*)

Propane Torch

Leafcutter Bee (*Megachile wheeleri*)



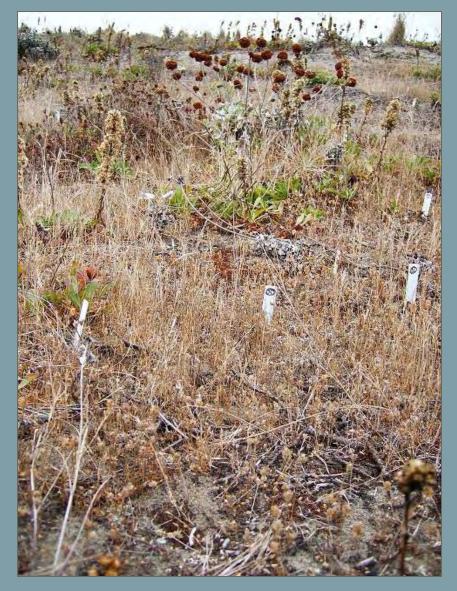
June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar		Мау	June	July	Aug	Sept
EGG]						Heat Treatment					
]						atment					
LARVA															
	PREP	JPA													
										PUPA					
													ADUL	Г	

The Concern

- Bees nest in invaded areas.
- Bees are important native pollinators.
- To restore a fully functioning ecosystem, must maintain important native pollinators.
- Are we doing more harm than good?

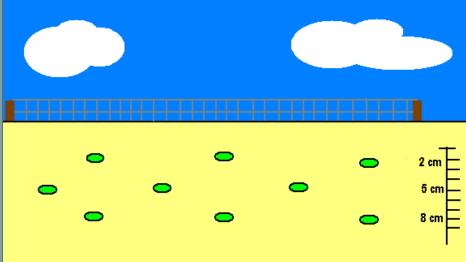
A Better Way?

The Radiant Heater



http://www.pesticide.org/radiant.html

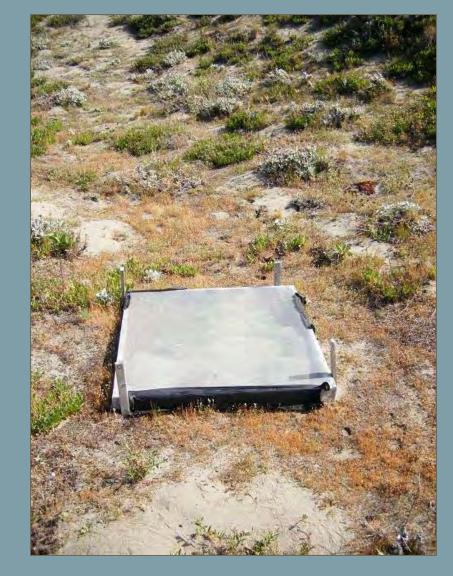
Research Objective & Hypothesis


Compare the propane torch method to the radiant heater method in their effect on Leafcutter bees.

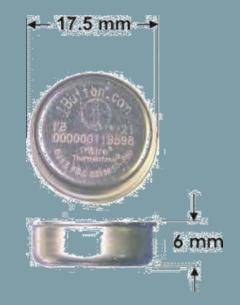
Prediction: Propane torch will increase mortality, radiant heater will not.

15 1-m² plots3 depths9 nest cells per plot

Propane treatment

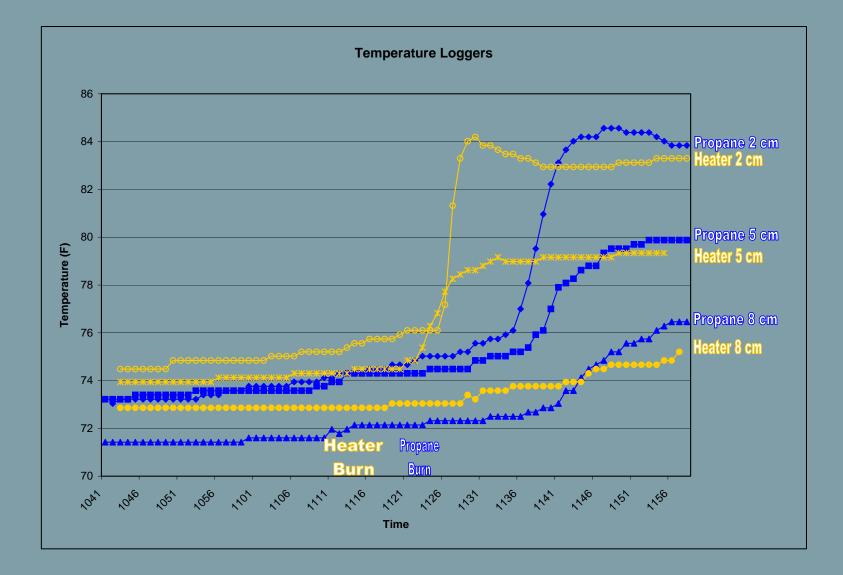


Radiant heat treatment



Control

Temperature loggers to measure heat penetration


Low Emergence Rates (Mortality 75.8%)

Treatment	Total # of Nest Cells	Total # Emerged Bees	Emergence Rate
Propane	45	12	26.7%
Heater	38	8	21.0%
Control	45	11	24.4%
Overall	128	31	24.2%

Me	an = 25.6%	Standard deviation = 19.0					
Plot #	Treatment	Total # Nest Cells	Total # Emerged Bees	Emergence Rate			
1	Propane	9	0	0%			
2	Control	9	0	0%			
3	Propane	9	2	22%			
4	Propane	9	2	22%			
5	Heater	9	3	33%			
6	Control	9	2	22%			
7	Heater	9	2	22%			
8	Heater	9	1	11%			
9	Control	9	1	11%			
10	Propane	9	2	22%			
11	Heater	9	1	11%			
12	Propane	9	6	67%			
13	Control	9	4	44%			
14	Control	9	4	44%			
15	Heater	2	1	50%			

No Treatment Effect

	Emerged	Not Emerged				
Propane	12	33				
Heater	8	30				
Control	11	34				
X ² = 0.355724 d.f. = 2 p-value = 0.8371						

Conclusions

Good news for Lanphere Dunes

Holistic ecosystem management

Thank You

- Michael Mesler, Susan Marshall, Megan Donahue, HSU
- Lauren Morgan-Outhisack, Jolynn Mahmoudi, Wendy Savage, HSU
- Andrea Pickart, Patti Clifford, Lanphere Dunes
- Department of Biological Sciences, HSU
- Eryn Pimentel

References

- A Photographic Guide to Plants of Humboldt Bay Dunes and Wetlands, Compiled by Gordon Leppig & Andrea J. Pickart, RELEASE 1.0, January 2005, USFWS, CDFG, FOD, NFWF
- Barthell, J. F., J. M. Hranitz, R. W. Thorp, and M. K. Shue. 2002. High Temperature Responses in Two Exotic Leafcutting Bee Species: *Megachile apicalis* and *M. rotundata* (Hymenoptera: Megachilidae). Pan-Pacific Entomologist 78(4): 235-246.
- Gordon, D.M. 1984. Ecology of Bees from Coastal Dunes, Humboldt County, Caifornia. M.A. Thesis, Humboldt State University.
- Gordon, D. M. 2000. Plants as Indicators of Leafcutter Bee (Hymenoptera: Megachilidae) Nest Habitat in Coastal Dunes. Pan-Pacific Entomologist 76(4): 219-233.
- Gordon D. M., R. W. Thorp, & J. R. Carey. 2006. Overwintering Mortality of Brood of Megachile wheeleri Mitchell (Hymenoptera: Megachilidae) a Ground-Nesting Leafcutter Bee in Coastal Dunes of Northern California. Poster. 54th Annual Meeting of the Entomological Society of America, Dec. 2005. Indianapolis, IN.
- Nyoka, S. E. 2004. The Effects of Exotic Plants on the Diversity and Abundance of Bees in the Humboldt Bay Dune System. Humboldt County, California. M.A. Thesis, Humboldt State University.
- Nyoka, S. E. 2005. Monitoring the effects of invasive annual grass control on solitary bees and biotic soil crusts. U.S. Fish & Wildlife Service, Arcata, CA, unpublished document.
- The Nature Conservancy. 1997. Transition Plan for the Lanphere-Christensen Dunes Preserve. The Nature Conservancy, San Francisco, CA.
- Wear, K. 2000. Experimental Control of Non-Native Annual Grasses. Dunesberry 18(3).

