Evening the odds: evaluating the combined effects of nitrogen fertilization and exotic annual removal on native annual forbs in the Colorado Desert

> Heather Schneider* & Edith Allen University of California, Riverside

Outline

- Introduction: invasives in the desert & nitrogen deposition
- Overview of the study:
 - Purpose
 - Study site
 - Methods
 - Results
- Conclusions
- Implications

Camissonia pallida

Welcome to the Desert

- Colorado Desert
 - Low elevation <1000 m
 - Sonoran Desert in southern California
 - Average precipitation: 2 6 inches (US Forest Service)
- Creosote Bush Scrub (CBS)
 - Larrea tridentata (creosote bush) is the dominant perennial shrub, often accompanied by Ambrosia dumosa
 - Patchy shrub distribution with bare soil between
 - Interspace filled in by winter annual forbs during the rainy season

Common Invaders

Schismus spp.

• Bromus rubens

• Erodium cicutarium

Brassica tournefortii

Schismus spp. grass invasion in a wet year.

The Problem with Invasion

Competition Exotics can outcompete natives for resources

• Fire

- Exotic annual grasses have been shown to be linked to increased fire frequency
- Ecosystem processes
 - Altered water and nutrient cycles

Anthropogenic Nitrogen Deposition

Nitrogen Deposition

Air pollution in the Coachella Valley, California

The Study

• Objective:

Loeseliastrum schotti

- To evaluate the combined effects of nitrogen fertilization and exotic removal on native annual forbs in the field
- Hypotheses:
 - There is a competitive effect of exotic annuals on native annual forbs
 - This competitive effect is altered by nitrogen deposition

Location

Study sites

- Coachella Valley, southern California
- CBS vegetation
- Approx. 8 kgN/ha/yr deposition
- Willow Hole (2008 & 2009)
- Varner Road (2009)

- 2004 2005: 12.77"
- 2005 2006: 0.15"
- 2006 2007: 0.8"

- 2007 2008: 4.171"
- 2008 2009: 4.25"

Methods

- 2008:
 - Willow Hole
 - -12 blocks, 4 plots each = 48 plots
 - Treatments:
 - Nitrogen : control (no N added) fertilized (25 kg/ha N added)
 - Exotic grass removal : control (no herbicide)

removal (Fusilade II: Fluazifop-P-butyl)

Methods

- 2009:
 - Willow Hole & Varner Road
 - Treatments
 - Nitrogen: control (no N added)
 - fertilized (25 ppm N added)
 - Exotic removal: control

Fusilade II + hand-weeding

Methods

- Vegetation sampling
 - Percent cover
 - Density
 - Species richness
- Analysis
 - Data shown was analyzed using the Wilcoxon Rank Sum test for nonparametric data in JMP

2008: exotic grass percent cover

2009: total exotic percent cover

Varner Road Native Species Richness 2009

Results

- Exotic cover and density were significantly reduced by Fusilade and hand-weeding
- Exotic removal significantly increased native forb density at Varner Road (p = 0.0026)
- Both exotic and native percent cover responded positively to nitrogen fertilization, although native forbs responded better when exotics were removed

Results

- Native forb species richness tended to be higher in unfertilized plots at Willow Hole, although not significantly (p = .0766)
- At Varner Road, native forb species richness was significantly higher in plots where exotics were removed (p = 0.0256)

Conclusions

- Nitrogen fertilization can affect percent cover of both exotic and native annual species
- Native forb percent cover responds more strongly to N when exotics are removed
- Species richness may be affected by N, although the relationship is somewhat unclear

Conclusions

- There was some competitive effect of exotics on native annuals, but the interaction with nitrogen was not significant
- The relatively low exotic cover at these sites may not be enough to elicit a strong competition by nitrogen interaction
- Very dry conditions at these sites likely prevent a level of productivity at which fire danger would increase, whereas wetter areas of the desert can see large increases in exotic cover and biomass that can approach fire thresholds

Implications

- N deposition can alter species interactions in the desert
- While fire danger may not be an issue at these sites, conservation of native habitat is
- As urbanization continues to increase in the desert, N deposition may also increase
- This work can be used to inform legislators about the impacts of N emissions on wild lands

Acknowledgments

Dr. Edith Allen Chris True Allen lab **UCR Botany & Plant Sciences** UCR Ag Ops The Community Foundation **Coachella Valley Mountains Conservancy National Science Foundation**

Lotus strigosus var. tomentellus

Camissonia claviformis

Cryptantha angustifolia

