Adaptive Grazing Management for Weed Control

Leslie Roche, Ken Tate, Josh Davy, D.J. Eastburn University of California-Davis, Davis, CA

ONE WORLD ONE UCDAVIS

Managing Weeds with Grazing

Prescribed grazing is the controlled implementation of the timing, frequency, and intensity of grazing to achieve specific goal(s).

The grazing manager can

- 1. Type of livestock (*e.g., cattle, sheep, goats*).
- 2. Number of livestock (*stocking density head/acre*).
- 3. Duration of grazing (*stocking rate head/acre/year*).
- 4. Seasonal timing of grazing (*e.g., spring, summer, etc*).
- 5. Frequency of grazing (*e.g., 1X, 2X per growing season*).
- 6. Spatial distribution of grazing (*e.g., fences, water*).

Managing Weeds with Grazing

 Plot scale research (<5 acres) results: Timing and intensity shown to reduce cover of weedy species.

Yellow starthistle

Centaurea solstitialis 75-90% reduction in flower heads (e.g., Thompson et al. 1993)

Medusahead

Taeniatherum caput-medusae 30-100% reduction in canopy cover (e.g., DiTomaso et al. 2008)

Relative Spatial Scale of Grazing Research and On-Ranch Grazing Management

Research Management Adaptively implemented, Fixed, controlled landscape strategies experiments 2575 ha 60 ha

Warning: Objects are to Scale

Cattle Grazing in a Noxious Weed-Dominated Rangeland

Case Study 1

Cattle Grazing in a Noxious Weed-Dominated Rangeland

- Bear Creek Management Unit
- 11,000 acres BLM-managed land
- Grazing terminated: 1999-2001
 - **Goal**: Enhance native plant cover
 - Outcome: Enhanced invasive weed cover
- Cattle grazing re-introduced: 2006

Cattle Grazing in a Noxious Weed-Dominated Rangeland

Rotational grazing system

- 80-600 ac paddocks
- ~400 cow-calf pairs
- January-May, 2006-2011
- Grazed 2x
 - Winter Target thatch
 - *Spring* Target late-flowering invasives

Species Composition, Cover, RDM

• Medusahead reductions in dry Springs.

- Medusahead reductions in dry Springs.
- No further reductions in wet Springs.

- Medusahead reductions in dry Springs.
- No further reductions in wet Springs.
- Ungrazed Treatments: Medusahead replaced by other undesirable plants (ripgut, red brome).

- Medusahead reductions in dry Springs.
- No further reductions in wet Springs.
- Ungrazed Treatments: Medusahead replaced by other undesirable plants (ripgut, red brome).
- Grazed Treatments: Increases in desirable plants (slender oats, filaree).

Davy et al. 2015. Calif. Agr.

Plant Community

2006: Composition not statistically different between grazed/ungrazed treatments.

2009: Composition significantly diverged between treatments.

2011: Remained significantly different.

Davy et al. 2015. Calif. Agr.

What did we learn?

- Grazing more beneficial to management goals than no grazing.
- To be more effective Late season grazing is key.
 - This study: Fixed grazing endpoint.
 - Not staying long enough to impact YST.
 - Not staying long enough to impact MH in late wet springs.
- Challenges: Available drinking water and animal welfare/production concerns in late season.

Case Study 2

Audubon california

- Engage diverse stakeholder at the very beginning of research
- Stakeholders prescribed strategies (treatments) and goals (monitoring metrics).
- Implementing, monitoring, and adapting with stakeholder input.

Field Workshops

UC Research Facility 8 pastures, 1200 acres

- 1) Primary natural resource and agricultural goals.
- 2) Potential challenges and opportunities for goals.
- 3) Adaptive management strategies to achieve goals.

Common Goals and Objectives

- T1 Season-Long Grazing ~6 months
- T2 Fall/Spring Grazing ~3 months
- T3 Fall/Spring, Targeted Grazing ~3 months

Grassland pastures ~ 3 head months/acre Oak pastures ~ 1.2 head months/acre

GOAL	Monitoring
Agricultural	Steer weight gains (ADG, total gain, gain/acre)
Production	Available forage
Diant Cover Diversity	Cover and frequency of invasive weeds,
	desirable forage groups, richness
Habitat Diversity	Ground bird hiding cover (veg structure)
Soil Health	Cattle fecal distribution, cover

Stakeholder Prescribed Adaptive Grazing Management Project – MH % Cover

Baseline

Year 3

Yearling Performance

	Year 1 ADG (lbs/day)		Year 2 AD	G (lbs/day)	Year 3 ADG (lbs/day)		
	Fall	Spring	Fall	Spring	Fall	Spring	
Season- Long (T1)	0.8	2.6	0.0	3.5	1.0	3.2	
Fall-Spring (T2)	0.3	3.2	-1.1	4.1	0.3	3.4	
Fall Spring- Targeted (T3)	0.3	2.6	-0.7	3.8	0.3	2.6	

Findings after 3 years of extreme drought...

- ~15 to 25% reductions in medusahead across all treatments.
- Available forage was greatest within the intensive rotational grazing treatment pastures (rest-regrowth dynamics and ↑ forage harvest efficiencies).
- 3. Capacity to adapt to drought greatest in the intensive rotational grazing treatment pastures.
- Intensive rotational grazing ↓ individual animal spring ADG, but ↑ available forage potentially supports ↑ spring stocking rate.

Take Home Points...

- In systems with high weed invasion/pressure grazing shown to be more effective than exclusion.
- <u>Experimental</u> and <u>experiential</u> knowledge show that grazing timing and intensity are key to successfully meeting goals.
- Management context: real world constraints.
- Multiple goals must be considered peril of single species management.
- Prescribed grazing should be considered as part of an integrated pest management program.

rangelands.ucdavis.edu

UC CE ONE WORLD ONE UCDAVIS

Yellow Starthistle

• No impact of grazing on starthistle cover.

Davy et al. 2015. Calif. Agr.

Stakeholder Prescribed Adaptive Grazing Management Project – Standing Crop

Ibs/acre 200-500 500-1500 1500-2500 2500-3500

On-Ranch Grazing Strategies California 2011 Mail Survey

Strategy $(n = 473)$	No. Pastures	Grazing Duration	Livestock Density (ac/AU)	Timing of Rest		
Extensive Rotation (46%)	Fal 2 to >10	Fall/Spring & Winter Gra Treatments				
Season Long Continuous (35%)	2 Seas	atment				
Year Long Continuous (19%)	2 to 5	Year	11 to 20	None		

On-Ranch Grazing Strategies California 2011 Mail Survey

Strategy (n = 473)	No. Pastures	Grazing Duration	Livestock Density (ac/AU)	Timing of Rest
Extensive Rotation (46%)	Fal 2 to >10	l/Spring Tre	& Winter Gr eatments	azing ving season
Season Long Continuous (35%)	2 Seas	on-Long	Grazing Tre	atment
Year Long Continuous (19%)	2 to 5	Year	11 to 20	None
Intensive Rotational	We wat success	nt see if this s on your pla	is a train-wreck o ice before we try t	or a it on ours. 77

Mental models and group discussion in adaptive rangeland management

L. Jasny, L. Roche, K. Tate, and M. Lubell In prep.

Before Discussion

After Discussion

Grassland Pastures: Years 1 & 2

	Richness		Medusahead cover (%)			Visual obstruction (cm)		
	Spring 2013	Spring 2014	Baseline	May 2013	May 2014	Baseline	May 2013	May 2014
Season-Long (T1)	5	5.6	37	15	18	22	18	19
Fall-Spring (T2)	6.3	6.5	26	7	8	18	14	9
Fall Spring- Targeted (T3)	5.5	6.3	24	13	11	18	17	26
Control Plots	4.3	4	35	38	19	14	52	73

Oak Pastures: Years 1 & 2

	Richness		Medusahead cover (%)			Visual obstruction (cm)		
	Spring 2013	Spring 2014	Baseline	May 2013	May 2014	Baseline	May 2013	May 2014
Season-Long (T1)	8.2	7.7	14	8	17	5	20	19
Fall-Spring (T2)	8.1	6.7	17	10	5	3	12	9
Fall Spring- Targeted (T3)	7.9	8.2	23	14	11	5	14	11
Control Plots	8.5	8.6	30	24	17	3	22	21

Ecosystem Services: Synergies

Managed livestock grazing can enhance herbaceous diversity and native plant richness in vernal pools and annual grasslands.

Weiss 1999; Marty et al. 2005; DiTomaso et al. 2008

Grazing as a tool to manage non-native invaders.

Livestock as ecosystem engineers.

Agricultural & Natural Resources Goals

Roche et al. 2015.

Prescribed Grazing Strategies Recommended for Study

Stakeholder Engagement Workshops

Working Groups

- Ranchers
- Rangeland Professionals
- Conservation Professionals

- Decision-making priorities
- Group interaction and learning

Participants

- Ranchers
- Ranch Managers
- Audubon California
- Beale Air Force Base
- CA Department of Fish and Wildlife
- Center for Natural Lands Management
- City of Fairfield
- Contra Costa Water District
- Defenders of Wildlife
- Department of Fish & Game
- East Bay Municipal Utility District
- East Bay Regional Parks
- Environmental Consultants

- Hedgerow Farms
- USDA NRCS
- Nevada Irrigation District
- Placer Land Trust
- Point Reyes National Park
- Point Blue Conservation Science
- San Francisco Public Utilities
 Commission
- The Nature Conservancy
- UC Cooperative Extension
- UC Davis Natural Reserve System
- US Fish & Wildlife Service
- US Forest Service

- 1. Rangeland ecosystems and plant invasion
- 2. Prescribed grazing management
- 3. Case studies in grazing management for weed control
- 4. Lessons learned

Rangelands

Plant Invasion

- Modern day rangeland plant communities dominated by exotic European annuals
- California: ~1800 non-native wildland plants (Cal-IPC, 2006)
- >40% of invasives found across rangeland habitats (Barbour, 2007)
- Spread of highly invasive weeds is a major threat to agroecosystem productivity and biodiversity
 - Impact native plants or other desirable and more palatable non-natives

Managing Weeds with Grazing

Infrastructure

• Fencing, drinking water, supplemental feeding, etc. facilities needed to implement grazing prescription.

Key Considerations

- Animal nutritional requirements, which vary annually (e.g., breeding, gestation, lactation, growth).
- Plant requirements to conduct critical functions (e.g., photosynthesis, reproduction).
- Mitigate potential negative impacts of animals on soils, riparian areas, habitat, non-target plant species, etc.

