Distributional Patterns of Perennial Pepperweed, *Lepidium latifolium*, in the San Francisco Bay



#### Melanie Vanderhoof and Chris Rogers, Environmental Science Associates

Photo: http://www.prbo.org/cms/docs/wetlands/lepidium04.pdf

#### **Research Questions**

Where does L. latifolium occur in the San Francisco Bay area?

Can its distribution pattern be explained and predicted using environmental variables?

# Lepidium latifolium

- A perennial weed
- Member of mustard family.
- Native to Eurasia.
- First recorded in CA in 1936, possibly from contaminated agricultural seed.
- Forms dense colonies or patches that grow 2-3 ft in height.



#### **Invaded Habitats**

#### Agricultural areas





#### Vernal Pools

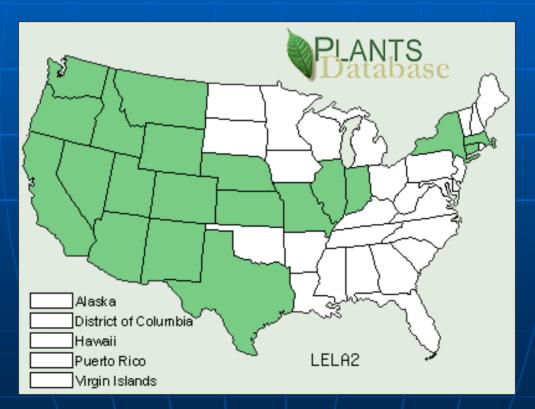


Marshes



#### **Riparian Zones**

Photos: ESA


### **Objectives**

- Map the distribution of *Lepidium latifolium* along the shoreline of the San Francisco Bay.
- Develop a predictive model that identifies high risk areas in the larger San Francisco Bay Area based on environmental variables.



# Mapping Methods

 Limited mapping of *L. latifolium* has occurred in the bay area (Grossinger *et al.* 1998; May 1995)



http://plants.usda.gov/maps/large/LE/LELA2.png

## Mapping the Shoreline

#### GPS mapping method

 the California Weed Mapping Handbook (CDFA)


 All patches larger than 1x1m were recorded.





Photo: ESA

# Patches of L. latifolium

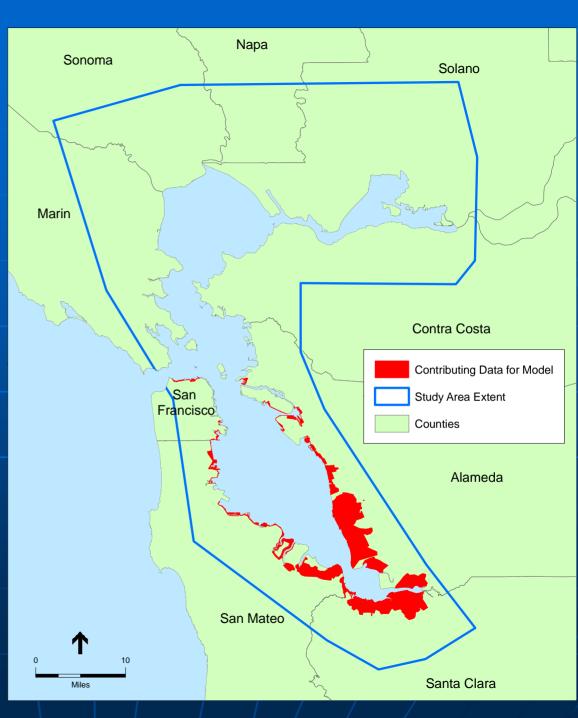


#### **Predictive Modeling**

 Predict probabilities of occurrence or spatial distribution of species.

 Gain insight into species/environment relationships.

Assess risk on local and/or regional scale.




#### **Predictive Modeling**

- 1. Dependent variable: known presence/absence of species
- 2. Independent variables: environmental factors
- 3. Relate variables to distribution using a statistical model (Binomial logistic regression)
- Transform model into a GIS probability map.

# Study Area

 Randomly selected 500 presence points and 500 absence points within areas surveyed.



#### Transferability

 Making predictions outside of the area in which the model was developed.

Difficulties...

Model valid for area surveyed.

 Model can provide guidance and risk assessment for outside areas.



#### **Environmental Predictor Variables**

- Habitat type
- Tidal regime
- Elevation
- Distance to open water
  Distance to road
  Distance to levees
  Distance to agricultural land





### **Spatial Extents**

#### **Spatial Extent 1**

#### **Spatial Extent 2**

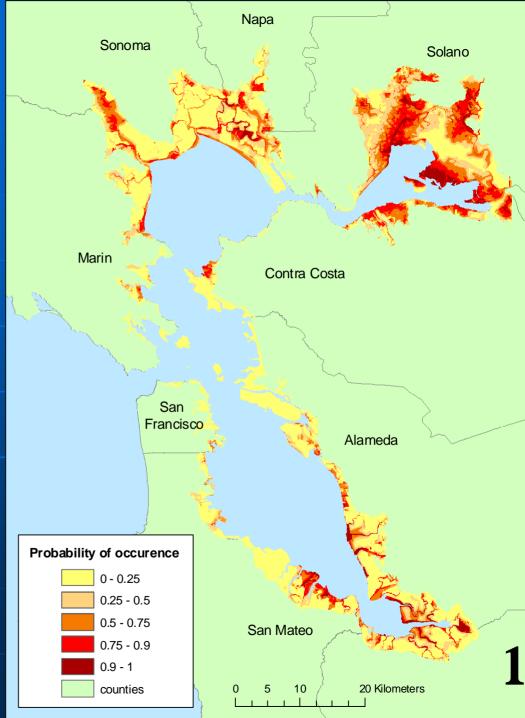


#### All variables considered



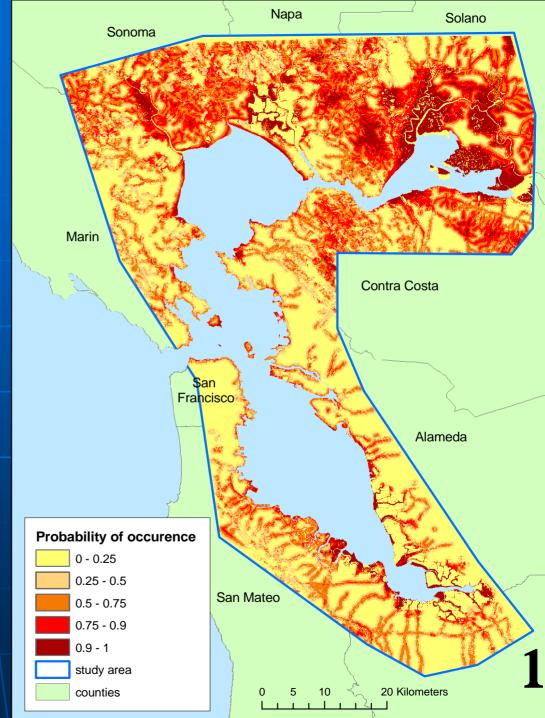
Elevation and Tidal Regime excluded

# **Results and Discussion**


Photo: ESA, Pittsburg, CA

#### Individual Variables: Nagelkerke R<sup>2</sup>

| Variable                          | Nagelkerke R <sup>2</sup> |
|-----------------------------------|---------------------------|
| Distance to L. latifolium patch   | 0.92                      |
| Tidal, tidal                      | 0.44                      |
| Cover, estuarine wetland          | 0.42                      |
| Cover, water                      | 0.36                      |
| Tidal, diked                      | 0.36                      |
| Bay habitat, salt ponds           | 0.32                      |
| Bay habitat, marsh                | 0.31                      |
| Distance from water               | 0.25                      |
| Distance from paved roads         | 0.094                     |
| Bay habitat, developed            | 0.04                      |
| Distance from levee               | 0.036                     |
| Cover, high-intensity development | 0.028                     |
| Cover, palustrine wetland         | 0.021                     |
| Tidal, muted                      | 0.013                     |
| Bay habitat, water                | 0.012                     |
| Tidal, non-tidal                  | 0.008                     |
| Bay habitat, mud flat             | 0.007                     |
| Distance from agriculture         | 0.006                     |
| Cover, other estuarine habitat    | 0.002                     |
| Bay habitat, other                | 0.001                     |
| DEM                               | 0.001                     |
| Cover, low-intensity development  | 0.001                     |
| Cover, other                      | < 0.001                   |
| Cover, bare land                  | < 0.001                   |
| Cover, grassland                  | < 0.001                   |


# **Spatial Extent 1**

- Significant Variables
- Found in wetlands
- Outside of diked tidal areas
- Closer to water and levees
- Further from roads



# **Spatial Extent 2**

- Significant Variables
- Found in wetlands
- Found in grassland, low-intensity devel. and bare ground
- Not in water
- Closer to water
- Further from road and agriculture



#### Significant in Both Models

Wetlands

Shorter distance to water

Longer distance to roads

#### **Unexpected Relationships**

 Distance to Agriculture
 Distance to Roads
 Pattern may differ in San Pablo Bay and Suisun Marsh.

Variable, Distance to Agriculture  $\rightarrow$ 



# Internal Accuracy Tests (SPSS)

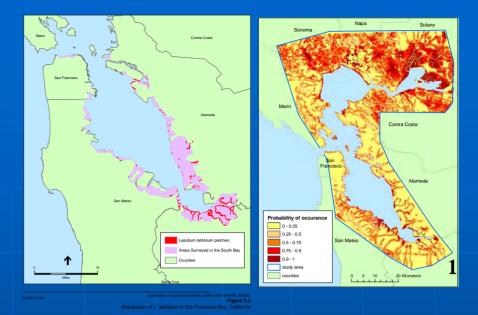

- Nagelkerke R<sup>2</sup>
   Model 1: 0.542
   Model 2: 0.623
- Classification Table
  - Model 1:
    - 80.4% absent correct
    - 82.8% present correct.
  - Model 2:
    - 79.3% absent correct
    - 87.4% present correct.



Photo: Melanie Vanderhoof



(Random 30% of original data)



- 1. The percent of cells coded correctly (either present or absent).
- 2. The percent of absent cells correctly coded.
- 3. The percent of present cells correctly coded.
- 4. The number of present cells correctly coded compared to the total number of cells predicted to be present (as a percent). (# of false positives or over-predicting presence)

# **External Accuracy Findings**

#### ACCURACY OF BINARY LOGISTIC REGRESSION MODELS AT DIFFERENT CUTPOINTS

| Spatial Extent | Cutpoint | 1(%)  | 2(%)  | 3(%)  | 4(%)  |
|----------------|----------|-------|-------|-------|-------|
| 1              | 0.5      | 86.01 | 85.9  | 93.28 | 9.23  |
| 1              | 0.75     | 92    | 92.16 | 91.5  | 15.22 |
| 1              | 0.9      | 98    | 98.74 | 50.2  | 37.97 |
| 2              | .5       | 65.06 | 64.62 | 93.85 | 3.87  |
| 2              | 0.75     | 77.68 | 77.5  | 89.48 | 5.69  |
| 2              | 0.9      | 89.05 | 89.4  | 68.12 | 8.88  |

- 1. The percent of cells coded correctly (either present or absent).
- 2. The percent of absent cells correctly coded.
- 3. The percent of present cells correctly coded.
- 4. The number of present cells correctly coded compared to the total number of cells predicted to be present (as a percent).

#### Models: extent 1 vs. extent 2

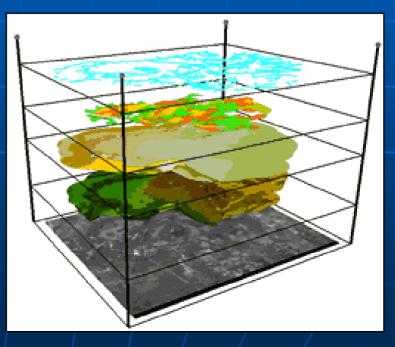
Model 2 tested slightly higher on internal accuracy.

Model 1 tested better with external accuracy.

Tidal regime categories.

## Weaknesses of Models

 Resolution not ideal (limits accuracy and precision of relationship)


Additional variables

Site specific relationships



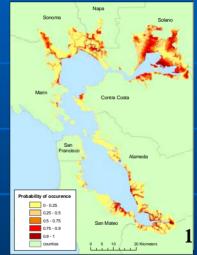
#### Threats to Validity

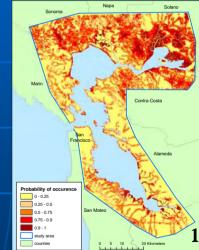
- Absence data (hasn't spread yet)
- Conversions of patches to 30 m raster grid.
- Errors and inaccuracies within the data layers



http://www.ruraltech.org/gis/images/gis\_layers.gif

#### **Risk Assessment**





Photo: ESA

# Is largely restricted to tidal marsh and riparian habitat.

Predicted areas:

- N. part of Suisun Bay
- Grizzly Bay
- Petaluma River
- Napa-Sonoma marshes
- Marshes in Don Edwards Wildlife refuge





#### **Risk and Public Lands**

Distribution of medium, high and very high risk land:

- Private land 85% of medium risk land, 70% of very high risk land.
- CDFG manages the most amount of land at medium, high and very high risk.
- Department of Defense, U.S. Fish and Wildlife and local water districts.

High Risk

 California State Lands Commission: >85% at high or very high risk

Conservancy / Land Trusts ~ 60% at high or very high risk

Santa Cruz

- CDFG: >40% at high or very high risk of invasion Low Risk
- NASA 3% at medium, high or very high risk
- National Park Service: <3% at high or very high risk</p>
- Open Space District ~4% at high or very high risk

#### **Management Recommendations**

- Identify high risk lands.
- Control infestations early.
- Monitoring priorities:
  - Conservation/Restoration areas
  - Marsh habitat



- Border between marshes and grasslands or low-intensity development.
- Close to water

http://www.cherrug.se/galleri/vaxter/images/Lepidium%20latifolium%20Bitterkrassing%20Tygelsjo%20angar%2020050714%20001.jp

#### Conclusions

- Mapping efforts established baseline distribution data.
- Within the S.F. Bay Delta:
  - *L. latifolium* prefers to grow within the tidal zone
  - In brackish and salt marshes
  - Close to water

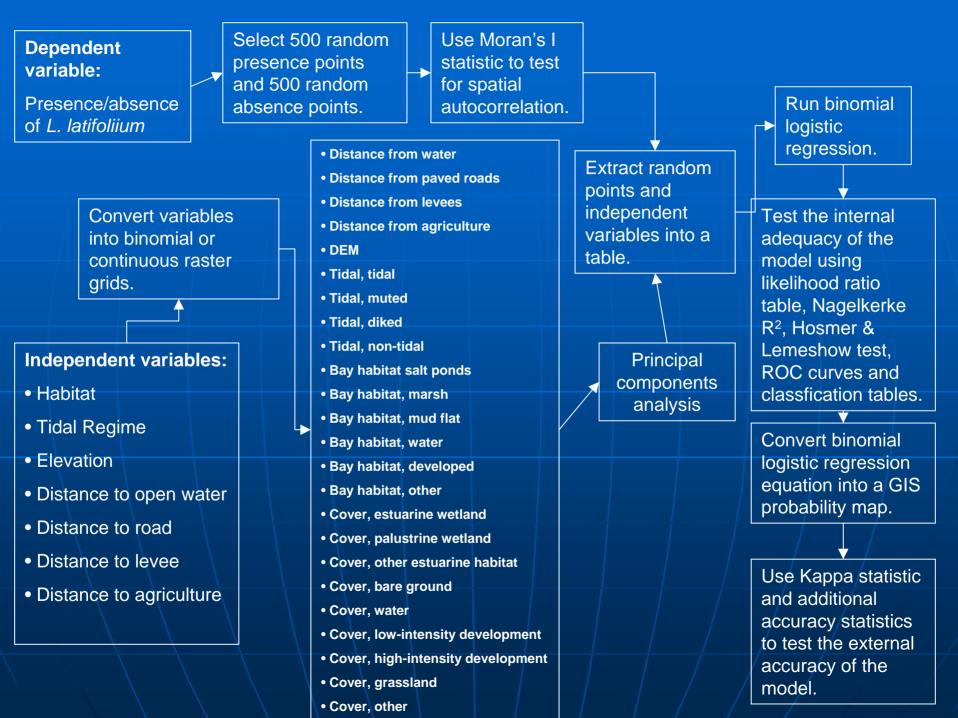


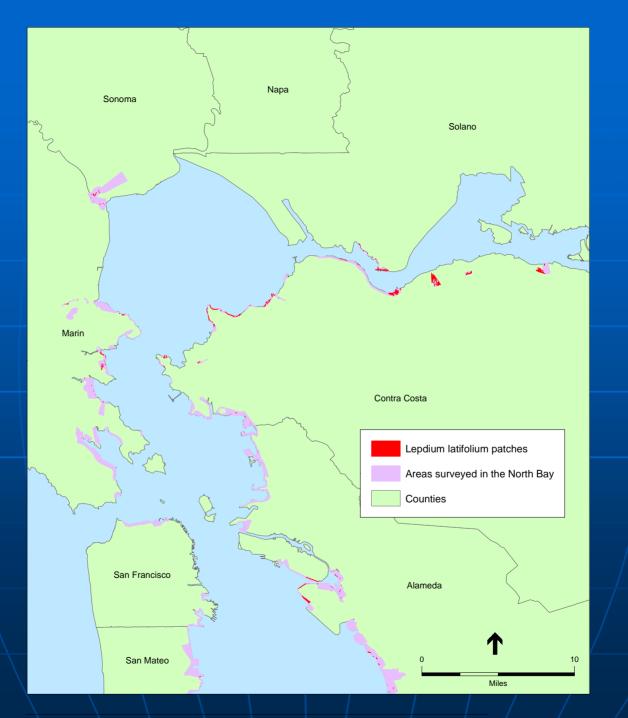
#### Conclusions

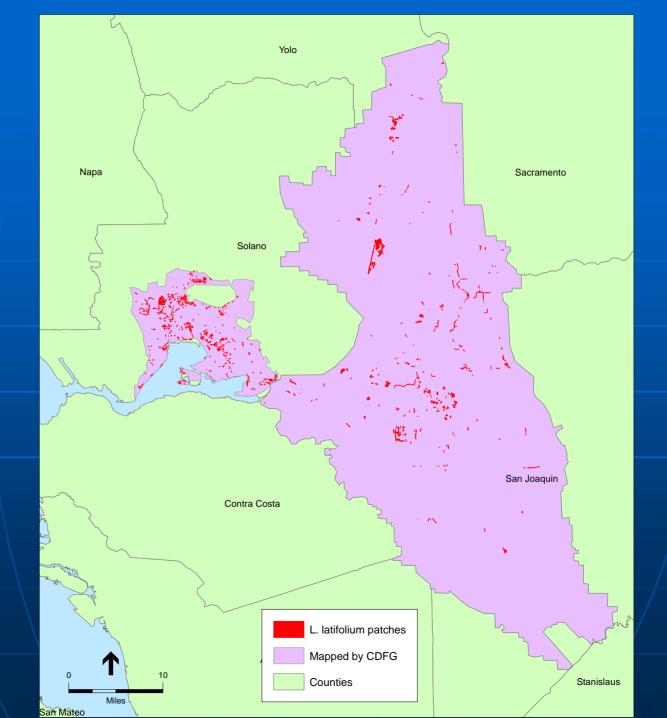
1<sup>st</sup> modeling attempt for *L. latifolium* in California.

- Significant relationships discerned in model can contribute to knowledge of *L. latifolium*.
- Modeling attempt shows promise for other invasive species.




http://images.statemaster.com/images/motw/us\_2001/california\_ref\_2001.jpg


#### Acknowledgements


#### CALFED

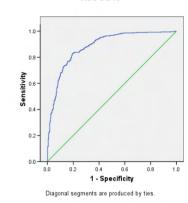
- Graduate school advisors, Barbara Holzman and Ellen Hines (SFSU)
- Martha Lowe, Mark Fogiel, field work
- Jerry Davis, Barry Nickel and Casey Cleve, GIS assistance
- Clyde Morris (USFWS) and John Krause (CDFG), access
- GIS data will be available through CDFG's BIOS.

# Questions...








### Internal Accuracy Tests

| Spatial<br>Extent | Likelihood ratio<br>table | Nagelkerke R <sup>2</sup> | Hosmer &<br>Lemeshow | % Absent<br>Classified<br>Correctly | % Present<br>Classified<br>Correctly |
|-------------------|---------------------------|---------------------------|----------------------|-------------------------------------|--------------------------------------|
| 1                 | <0.001                    | 0.542                     | 0.059                | 80.4                                | 82.8                                 |
| 2                 | <0.001                    | 0.623                     | 0.631                | 79.3                                | 87.4                                 |

## **ROC Curves**

**Table 12.** The area under the ROC curve and its statistical significance for both *L. latifolium* predictive models. The cutpoint was assumed to be P = 0.5.

| Spatial<br>Extent | ROC Area | ROC Asymp |
|-------------------|----------|-----------|
| 1                 | 0.884    | <0.001    |
| 2                 | 0.907    | < 0.001   |



#### Spatial extent 1

**Table 13.** The sensitivity and specificity values on the ROC curvec atdifferent cutpoints. The goal is to maximize sensitivity and minimizespecificity.

| Spatial Extent | Cutpoint | Sensitivity | Specificity |
|----------------|----------|-------------|-------------|
|                | 0.5      | 0.826       | 0.196       |
|                | 0.75     | 0.679       | 0.104       |
|                | 0.9      | 0.217       | 0.012       |
| 2              | 0.5      | 0.874       | 0.206       |
| 2              | 0.75     | 0.714       | 0.1         |
| 2              | 0.9      | 0.31        | 0.02        |

ROC Curve

#### Spatial extent 2

ROC Curve