Invasibility of experimental riparian communities by Arundo donax

Lauren Quinn and Jodie Holt University of CA, Riverside

Outline

- Introduction
 - Brief overview of *A. donax* biology and of the role of diversity in plant community invasibility
- Presentation of the experiment
- First-year results
- Discussion and implications

Arundo donax

- *A. donax*, or Giant Reed, is an invasive plant in California's riparian areas
- Intentionally introduced to southern California in the early 1800's for erosion control
- Native to India or eastern Asia, but widespread in Europe, North Africa, the Middle East, Australia, and North and South America

Arundo donax Biology

- Large (8-10 m) Poaceae species
- Very rapid growth rate (5-10 cm/day)
- Rhizomes can sprout at multiple axillary buds, forming large clones
- Dispersal by rhizome fragments washed downstream during flood events
- So far, no viable seeds have been found in California

Community Invasibility Diversity matters?

- Opposing views on role of community diversity in invasibility
 - High diversity means less invasibility because of "total niche occupation"
 - High diversity means more invasibility because the site characteristics that favor high diversity favor invasion, as well

Community Invasibility Experiment

- Controlled field experiment in progress
 - Addresses role of functional diversity of native riparian communities in initial success of *A*.
 donax invasion
 - Examines the effect of *A. donax* on resident community after introduction
 - May provide ideas for restoration design

Experimental Design

- In March 2002, three native species were planted alone and in all possible combinations in a randomized complete block design
 - Tree (Salix gooddingii), shrub (Baccharis salicifolia), rhizomatous sedge (Scirpus americanus)

Two planting densities: High (1 m²) and Low (4 m²)

Community Invasibility Experiment Hypotheses

• Early establishment will be most successful in single-species low-density plots with high light penetration

 Early establishment will be slowed by full occupation of spatial resources in mixed, high-density plots

Data Collected

- In May 2003, *A. donax* rhizomes were introduced into half of the plots
 - Initial rhizome fresh weight (FW) and volume
 - A. donax establishment, growth, and survival
 - plot data: percent cover and PAR; soil moisture and temperature

A. donax Emergence

Days to shootem ergence

- density difference: NS
- treatment difference: p=0.018
- interaction term: p=0.076

A. donax Growth

Arundo shootgrow th

- density difference: p=0.038
- treatment difference: p=0.014
- interaction term: NS

A. donax Shoot Survival

- density difference: NS
- treatment difference: p=0.000
- interaction term: NS

A. donax performance Generalities

- Compared to other treatments, plots comprised of shrubs alone, shrubs + sedges, and shrubs + trees showed the following patterns:
 - Shoots took longer to emerge in high-density plots
 - Shoots were shorter (also shorter in highdensity plots than low-density plots)
 - Shoots survived for shorter periods of time

Environmental Variables Generalities

- Compared to all other treatments, plots comprised of shrubs alone, shrubs + sedges, and shrubs + trees showed the following patterns:
 - PAR was reduced (also reduced in high-density plots compared to low-density plots)
 - In low-density plots, overstory cover was greater

Environmental Variables Generalities

- Soil moisture was greater in low-density sedges-alone and trees + sedges treatments than in all other plot types
- Soil temperature was greater in high-density plots and in sedges-alone, trees-alone, and trees + sedges treatments

Sorting it all out...

- Stepwise Multiple Regression Analysis

 (α=0.25) identifies the variables that best
 explain the performance of *A. donax* in this
 experiment:
 - number of sedges, shrubs, and trees/plot
 - plot overstory and understory cover, PAR, soil temperature, soil moisture
 - initial rhizome fresh weight and volume

Stepwise Multiple Regression

	Contributing Variables			
	1	2	3	4
A <i>r</i> undo Variable				
Maxim um Height	Rhizom e Fresh W eight	% 0 verstory Cover	# Baccharis Shrubs/P lot	
	$R^2 = 0.361$	$R^2 = 0.442$	$R^2 = 0.452$	
	p=0.000	p=0.025	p=0.156	
	Phinam a Emigh Milaight	# Pagebaria Shruha / Dat	Soil Water Content	⁸ 0 romb r Coro
TOTAL # OLG TOW HIS Days				
	R ⁻ =0.239	R ⁻ =0.341	R ⁻ =0.352	R ⁻ =0.362
	p=0.000	p=0.000	p=0.189	p=0.205
Tim e to Em ergence	# Baccharis Shrubs/P lot	Rhizom e Fresh W eight		
	$R^2 = 0.070$	$R^2 = 0.129$		
	p=0.006	p=0.009		

Summary

- While rhizome weight was an important factor determining initial success of *A*. *donax* invasion in this experiment, planting density and community composition played critical parts as well
 - In general, shrubs supressed emergence, growth, and survival of *A. donax* shoots in the first year
 - Low-density plots allowed A. donax shoots to attain greater heights than high-density plots

Implications

• Potential for use of *Baccharis salicifolia* in high-density planting arrangements for inexpensive native restoration design

• Because high-diversity (3 spp) treatments were not successful in suppressing *A. donax* invasion, these data support the hypothesis that diverse plant communities are more invasible than simple communities

Thank you!

- Jodie Holt, major professe
- Edie Allen

committee

• Larry Li

Funding Sources:

- Center for Conservation Biology, UC Riverside
- California Department of Food and Agriculture

Field and Moral Support:
Mike Rauterkus
Pobin Marushia
Court White
Rana Tarvar

Ian Gillespie
Ken, Jared, and Patrick