Prediction of *Cynara cardunculus* **seedling development using a degree-day approach**

Virginia A. White and Jodie S. Holt University of California, Riverside

Objective and Procedure

- The objective of this project is to determine a degree-day model which accurately predicts *Cynara carcunculus* development.
- This project involves a phenology experiment, degree-day model construction, and model validation.
- Degree-day calculator available at: (http://www.ipm.ucdavis.edu)

Degree-Day Explanation

- "One degree-day is equal to one degree above the lower developmental threshold over 24 hours."
 - (http://www.ipm.ucdavis.edu)
- Example:
 - Minimum temperature threshold: 7° C
 - Daily temperature of 8° C= 1 degree-day
 - Daily temperature of 9° C= 2 degree-days

Basic Criteria

• Biofix

- Date when degree-days begin accumulating

- Temperature
 - Daily temperature readings (max, min)
- Method of Calculation

 Single-sine calculation: uses daily max and min temperature to produce a sine curve

• Upper threshold cutoff method – Horizontal, intermediate, vertical

Single-Sine Calculation Method

http://www.ipm.ucdavis.edu/WEATHER/ddconcepts.html#Using

Upper Cutoff Methods

• Horizontal

- Development continues at a constant rate above upper threshold
- Intermediate
 - Development slows (but does not stop) above upper cutoff
- Vertical
 - Development stops above upper threshold

Phenology Experiment

- Agricultural Experiment Station
- 12 plots per block
 One plot seeded per month
- 16 planting locations per plot
 Arranged in a 2 m x 2 m grid
 - Central 4 planting locations:
 - 5 seeds planted, thinned to one

Randomized Complete Block Design, 4 replicates

Phenology Experiment, cont.

- Data recorded twice weekly
- Recorded days after planting to developmental stages:
 - Emergence, 2-11 leaves, bolting, 1-11 flowers open, seed shed, re-sprouting

Phenology Data

- Determined median days to each developmental stage within each plot
- Averaged the four blocks for each treatment (month of planting)
- Determined mean number of degree-days accumulated for each stage of development and each treatment (used planting date as biofix)

Degree-Day Calculator

1. Specify source of temperature data:

Center data online

Degree-Day Calculator, cont.

2. Run models	OR 2. Calculate any — degree-days
Select an organism and preset thresholds	
Beet armyworm (Lower=54 F) California red scale (Lower=53 F) Codling moth (Lower=50 F, Upper=88) Consperse stink bug (Lower=53.6 F) Cotton (Lower=60 F) Elm leaf beetle (Lower=52 F) Fuller rose beetle (Lower=51 F) Lygus bug (Lower=54 F) Navel orangeworm (Lower=55 F, Upper=94) Omnivorous leafroller (Lower=48 F, Upper=94) Orange tortrix (Lower=43 F, Upper=78) Oriental fruit moth (Lower=45 F, Upper=90) Peach twig borer (Lower=50 F, Upper=91) San Jose scale (Lower=51 F, Upper=90)	 Thresholds Fahrenheit Celsius Enter lower
Run model Clear	Calculate Clear

Degree-Days Accumulated-Determination for Each Model

Day after Biofix	4H24	7V30	4I36	5V24	7V22
0	8.5	5.52	8.5	7.5	5.52
1	17.3	11.32	17.3	15.3	11.32
2	23.9	15.15	23.9	20.9	15.15
3	29.87	19.04	29.87	26.12	19.04
4	36.25	23.46	36.25	31.81	23.46
5	43.16	28.28	43.16	37.98	28.28
6	51.06	33.65	51.06	44.93	33.65
7	57.36	36.98	57.36	50.23	36.98
8	65.56	42.18	65.56	57.43	42.18
9	75.16	48.78	75.16	66.03	48.78
10	83.96	54.58	83.96	73.83	54.58

Model Selection Using Phenology Data

Emergence							
M odel	1/2/1998	2/3/1998	3/2/1998	4/1/1998	5/1/1998	M ean	C V
7 7 2 0	88.05	83.2	75.05	73.65	84.15	80.82	7.670570162
4V 20	135.14	132.82	111.53	115.11	117.94	122.508	8.77273749
10V 20	48.21	44.07	43.66	41.2	51.29	45.686	8.797432896
2V 20	167.91	168.17	136.99	145.19	140.47	151.746	9.988145822
5V 22	129.03	117.39	111.37	107.98	137.1	120.574	10.14129474
2730	189.53	170.4	185.3	163	215.45	184.736	10.97619722
2736	189.53	170.4	185.3	163	215.45	184.736	10.97619722
6V22	112.66	100.55	98.37	93.5	123.94	105.804	11.6733542
2V 24	186.08	170.4	159.6	160.9	209.06	177.208	11.68678797
4V 23	148.48	134.81	128.7	125.98	165.74	140.742	11.69065366
7 V 2 2	96.73	84.83	85.88	80.31	110.77	91.704	13.35282175

Validation Study

- Crystal Cove State Park
- 6 transects: each 50 m long
- 2 aspects:
 - 3 transects facing east
 - 3 transects facing west
- 10 plots/transect: 1 m x 0.5 m
- Flagged emerged seedlings
- Recorded stage of development weekly

Validation Procedure

- Determine biofix
 - Use significant rain events as biofix dates
- Calculate degree-days accumulated
 - Use field temp. data and degree-day calculator
- Predict each stage of development from best-fit model
- Determine actual number of days to each stage of development in validation study

Degree-Days Accumulated-Field Results

	11/8/2002									
Day	7v22	7v23	10v20	10v24	5v22	6v22	7v24	7v25		
0	8.28	8.28	5.28	5.28	10.28	9.28	8.28	8.28		
1	18.22	18.22	12.22	12.22	22.22	20.22	18.22	18.22		
2	26.78	26.78	15.58	17.78	32.78	29.78	26.78	26.78		
3	35.61	35.61	18.67	23.61	43.61	39.61	35.61	35.61		
4	40.7	41.44	20.84	28.04	50.03	45.37	42.33	43.5		
5	46.34	48.23	23.09	34.55	57.2	51.77	51.72	52.89		
6	54.9	56.79	26.45	40.11	67.76	61.33	60.27	61.44		
7	58.67	61.01	28.02	43.09	72.64	65.66	65	66.71		
8	62.91	65.89	29.77	46.77	78.23	70.57	70.62	73.27		
9	67.66	71.55	31.71	51.62	84.48	76.07	77.68	82.1		
10	71.72	76.23	33.4	55.21	89.89	80.8	83.09	88.43		

Validation Data

- Determined median days to each developmental stage for each transect
- Averaged all six transects= Actual 'days to'
- Calculated Predicted Actual 'days to' for each model, each stage of development

Prediction Success

	11/8/2002		11/29	/2002	12/16/2002	
Stage	Models	Diff	Models	Diff	Models	Diff
Emergence	5v22	0.167	7v24	0	10v20	0.689
	6v22	0.167	10v24	-1	5v22	-2.311
	7v22	0.167	6v22	2	6v22	-2.311
	7v23	0.167	7v22	2	7v22	-2.311
	7v24	0.167	7v23	2		
	7v25	0.167	7v25	-2		
	10v20	0.167				
	10v24	0.167				
2 leaves	5v22	8.667	10v20	-1	10v20	-1.037
	6v22	8.667	5v22	-5	5v22	-4.037
	7v22	8.667	6v22	-5	6v22	-4.037
	7v23	8.667	7v22	-5		
	7v25	8.667				

Implications and Future Work

- Land managers can use their own temperature data and rain events to predict *Cynara cardunculus* development
 - Improve timing of control efforts
 - Reduction of personnel time/effort
- Next up: predicting the re-sprouting and development of *Cynara cardunculus* adults

Acknowledgements

- Jodie Holt
- Holt Lab
 - Rana Tayyar
 - Lauren Quinn
 - Mike Rauterkus
 - Robin Marushia
 - Jared Stevens
- Clinton White

- Department of Botany and Plant Sciences
- Crystal Cove State Park
- Montana State University-Center for Invasive Plant Management
- UC Exotics Invasive Pests and Diseases Research Program

