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native plant
communities

 Overabundant plant
growth will adversely
affect water quality and
guantity

 The benefits of
managing aguatic
plants for water
resources

(Top) Hydrilla mat entangles outboard motor
on Lake Gainesville, MS.

(Bottom) Giant salvinia completely covers
bayou along Pascagoula River, MS. Photos by
W. Robles.
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erosion

* Increase sedimentation,
reducing turbidity

e Provide habitat for insects,
forage fish, fish spawning
and YOY fish

e Provide food for waterfowl,
other animals
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asian Watemilfoil
in Lake George, NY




e Hydrilla

e Eurasian watermilfoil
e \Waterprimrose

e Egeria
e See Cal-IPC
e http://www.cal-ipc.org/



arrying capacity
* Flooding

* Blockage

e Water quality

e Drinking water issues

Madsen on Jefferson Slough, MT. Invasive hybrid
cattail and Eurasian watermilfoil have altered the flow
pattern to create shallow channel, reduced flow, and
increased sedimentation. Reduced flows have
encouraged channel widening. Photo by Celestine
Duncan.
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Carrying Capacity

Flooding

Blockage
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transpiration in a
plant canopy, as
opposed to
evaporative water loss
from standing water
alone. NASA
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Alligatorweed
Cattail, broadleaf
Cattail, broadleaf
Cattail, narrowleaf
Duckweed
Pickerelweed
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e Emergent plants tend to transpire more than
just evaporation

 Horizontally-growing free-floating plants
transpire equivalent to evaporation

e Submersed plants don’t transpire at all...



. Two invasive
plant species in Florida, water hyacinth (Eichhornia crassipes) and Melaleuca
quinguenervia, have been attributed with far more water use than native wetland
and terrestrial species or open bodies of water. Control programmes for water
hyacinth have been proposed based on putative savings of reservoir water supplies.
Part of the rationale for eradication of Melaleuca in southern Florida is the fear that
this tree will "dry up the Everglades.” The purpose of this paper is to review the
origins of misconceptions concerning "evaporative power" of these species and to
explain why all well-watered vegetation in similar climates should have similar
evapotranspiration (ET) rates. The ratio of ET to open-water evaporation (E,)
reported for water hyacinth ranges from 12 to 0.87. The large values of ET/E,
reported in the literature have been caused by growing plants in small containers
which expose large peripheral foliage surface areas above the surrounding area,
creating a "clothesline effect". Non-emergent, but exposed, floating vegetation has
ET/E, values of about 0.9. Large areas of emergent aquatic plants should not have
ET/E, ratios greater than 1.0.




carry water through:
— Taking up space (volume
/ displacement)

— Reducing flow velocity
and “throughput”

— Increasing hydraulic
resistance

— Encourage sedimentation

(Top) Channel of Pend Oreille River filled with
Eurasian watermilfoil. (Bottom) Underwater view of
Eurasian watermilfoil. Photos by John Madsen.
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Open Water
e \ N

—Surface

y Plants

i : N . J ‘. o '." h '.'. ; '.!llgl'.. / s " 'I = |' K F " .. - W -.
& L] "' ! s - . . - . |I & J_ (it Wt t it o '. o . ’ n
‘ R k., ol LA R v ST ' Z 0. e e

Obscured Bottom Signals

FiG. 2. Echogram showing cross sectional area of water column showing the open water and the water
occupied by aquatic plants, and the areas under the plant beds where bottom detection is partially or
totally obscured.
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FiG. 5. Distribution of aquatic plants (by percent volume of water col-
umn) across Devils'Lake in May, July, and September 1986 (Transect
7).

Thomas et al. 1990
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Fig. 2. Mean current velocities at 2 em intervals over substrate trays from the siream bed
to the surface: (a) comparison of current velocities in and over Ranunculus agquatilis trays
to those over control trays; (b) comparison of current velocities in and over Rorippa
nasturtium-aquaticum trays to those over the control.
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Figure 5

Measured velocity (dots) from Ghisalberti (2005). Predicted velocity (solid line) with confidence limits (dashed
lines: H = 46.7 em, b = 13.9em, S = 2.5 x 1072, 2 = 0.034 em™!, and Cp; = 0.77 (measured). Above
the meadow, the velocity is predicted from the logarithmic profile (Equation 12), with u, = [gS(H — fJ}]U'S,
2w = b —(1/2) 8, (Equaton 13), and 2, = (0.04 + 0.02)a~!. Inside the meadow, the velocity is predicred
from Equations 14 and 15, with U}, taken from logarithmic fit.
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Fig. 3. The average Manning's n {averaged for discharge and vegetation distribution pattern) of 5 macrophyte species (C. platycarpa, K. penicillatus, P. natans, 5. pectinatus, 5.
erectum ). Species differing { p < 0.05) from each other are shown in different colours.
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by 75%
 Weed control in canals is often difficult due to
flowing water environment and water use

restrictions

CAIP, IFAS




weed-infested, earth-lined canals without buried membranes,
flow characteristics such as depth of flow, average velocity, and
channel roughness may be difficult to predict and that weed
infestations may seriously complicate the operation of the canal.
The increase in depth of flow due to the presence of aquatic
weeds and (or) canal operations may cause an increase in
seepage losses, reducing the carrying capacity of the channel
and also resulting in salinity and (or) waterlogging problems in
adjacent lands.

Manz and Westhoff 1988

Numerical analysis of the effects of aquatic weeds on the performance of
irrigation conveyance systems



duration, and probability
of flooding

e Aquatic plant control in
Florida saves an
estimated S300M in
potential property
damage

CAIP, UFL




stream with relatively constant flow.
Sago pondweed dominant.

Madsen 1993
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Figure 9.—Water level (or stage, in ft) versus aquatic plant
shoot biomass (g m*) for two sites on Badfish Creek, W1. Mean
biomass versus stage for each sample date at the two sites (A);
estimation of biomass allowable from known hazard and flood
stage water levels (B). Data from Madsen 1986.
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Fig. 3. Diagram of the effects of macrophytes on conditions in the stream microenviron-
ment, with emphasis on current velocity, substrate, and potential food availability. Arrows
indicate direct causal relationships.



water intakes, narrow
areas in channel, and
other structures

 May interfere with flow
or use of water

* |rrigation,
consumption, or
cooling applications



 [n 1991, an invasion of the aquatic weed
nydrilla shut down the St. Stephen
nydroelectric plant on Lake Moultrie for
weeks, costing S4 million in lost productivity
and $526,000 worth of gamefish deaths.




Recreation, water storage,
hydropower

Central Arizona Project pumps
water from Lake Havasu for
agricultural and domestic use
across central and southern
Arizona
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invaded in recen
years, greatly
increasing water
clarity

Predictably, plant
growth expanded

Rafts of native plants
break off and clog
water intake structure
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Lake Havasu Survey Points

Lake Havasu Vegetated Points







Spiny Nalad Depth Distribution
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Spiny naiad senesces in August

Biomass (g m'2)
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Lake Havasu Drift Study
Sept. 10, 2011

Legend

* Drone 1 948m

Drone 2 939m
 Drone 3 882m
Drone 4 942m

Mats of senesced plants
move quickly from source
sites with proper wind
direction

Pumping draws plants to the
inlet
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Lake Havasu Drift Study

Oct. 9, 2011

Legend
Drone 109 427m

= Drone 108 291m
= Drone 107 413m
= Drone 106 398m
Drone 105 196m

187.5 375 750 Meters



may no longer be
fitted for its intended
or desighated
purpose.




— Boating

— Fishing (both from bank and
boat)

Recreational use of one lake (Lake
Tahoe, CA) was estimated at $30-
S45M/year

Benefit/ Cost ratios of
management typically are higher
than 10:1




the aesthetic appeal

One study indicates that
property values declined an
average of 13% in Wisconsin

lakes invaded by Eurasian
watermilfoil




sediment to water
column

Decomposition
releases nutrients

Reduced oxygen, pH

shift can allow release
of nutrients from
sediment




P Loading

James et al. 2001

Curlyleaf Pondweed
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Fig. 3. Dissolved oxygen (mg 1="') isopleths in a dense stand of B. schreberi in Keevies Lake
from December 1986 to December 1987. The stippled area represents the bottom of the lake

during summer low water.

Frodge et al. 1990 — western Washington State
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Fig. 7. Dissolved oxygen (mg 1=") isopleths in a dense mixed stand of C. demersum and M.
exalbescens in Bull Lake from March 1986 to December 1987. The stippled area represents the
bottom of the lake during summer low water.

Frodge et al. 1990 — eastern Washington State



problems
 Trihalomethane
e Obstructing intakes



— Taste problems
— Odor problems

— Increase trihalomethane, a
carcinogenic precursor

— Reduced transport at
drinking water intakes



Prymnesium parvum (top),
Oscillatoria sp. (right)
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MIB Conc. (ng/lL)
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Fig. 5. Concentrations and masses of MIB in Saguaro Lake (upper) and Lake Pleasant (lower). Epilimnion (M) and hypolimnion (£)
MIB concentrations are connected with lines, and the total MIB mass in the reservoir (%) 15 also indicated.

7 Stratified

Stratified

Stratified

"
X

I

Aug-99 Dec-99 Apr-00 Aug-00 Dec-00

Apr-01  Aug-01

Dec-01

Apr-02

MIB Mass (kg)

60 16
] Stratified Stratified Stratified Stratified |
% } ] ] [
] q! 12
a0 [\ I
1 \ r
100 L
el
30 I| ﬁ}>|< X 8
] )4 L
:|| X L
20 7 ;E\. |
I I‘ .ﬁl 1 4
10

_|1L,|m__

Aug-99 Dec-99 A

i
il T

pr-00

Aug-00

Dec-00  Apr-01

Aug-01

Dec-01

Apr-02

MIB Mass (kag)



tions less than 110 pg-L* throughout the entire lake.

25 - human detection threshold

Geosmin, ng-L”
N

N SU— S S

S S DU LN
20-May-99 28-Aug-99 6-Dec-89 15-Mar00 23-Jun00 1-Oct-00 9-Jan-01
Date

Figure 2 ~Trends in geosmin at all six sampling stations in Chene
Reservoir, USA. ’

6
e SR SO S,
Ty
5 4
=
£ 31
E
w
Geosmin = 0.412 Chla - 1.08
1- ? =072
0 T i ]
0 5 10 15 20

Chlorophyll a, pgeL™”
Figure 4.-Relationship between station mean concentrations of
geosmin and chlorophyll ain Cheney Reservoir, USA. The horizontal
dotted line indicates an approximate threshold concentration of
geosmin for human detection of 5 ng- L',



nonnative plant

Reduces nutrient
loading from
decomposition

e Allows increased
diversity and
abundance of native
plants




community from
before drawdown
(1995; drawdown in
1996) and two
years after

drawdown (1997 to
1998)




Eurasian watermilfoil Frequency

1995, and a
dominant; to
36% in
1997 and
11% in 1998

Drawdown




Lake, from
28% of the
lake in 1995 to
100% by 1997
and 1998.

A restoration
success

Native Plant Frequency

Drawdown




Native Plant Diversity

after drawdown,
decreased with
interspecific
competition in
1998

Drawdown
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