Nitrogen deposition impacts on a nutrient-poor grassland ecosystem: conservation, management and restoration

> Stuart B. Weiss Creekside Center for Earth Observations

Serpentinite forms discrete patches of habitat

Serpentinite weathers to thin, rocky, nutrient-poor soils:

high Mg, Ni, and Cr, low Ca, N, P, and Mo

Hostplants and Nectar Sources

Rare Endemic Flora

Problem

In absence of cattle grazing in South Bay, introduced annual grasses overrun habitat within several years (repeatable).

Dry deposition – Dominant in California

Air Pollution Chemistry Simplified

$HNO_3 + NH_3 - NO_3NH_4(p)$

Fertilizer, Vehicles

Dry Deposition

- Complex process
- Resistances: Aerodynamic, boundary layer, and surface
- Surface resistance function of composition, wetness, plant cover, and N-species
- Deposition directly to surfaces and/or through stomata
- > Up to 45 kg-N ha⁻¹ yr⁻¹ in San Bernardino Mtns, 20-30 kg-N ha⁻¹ yr⁻¹ in Riverside

Flux = Dep Velocity X Concentration

Passive Sampling

Dr. Andrzej Bytnerowicz, USDA FS Riverside, CA

June Ν 40 NNW NNE NW NE 30 20 WNW ENE W E WSW ESE sw SE SSŴ SSE S Calm 2.1%

December Ν 40 NNW, NNE NE NW 30-20 WNW ENE W Е _ WSW ESE sw SE SSW SSE s

Calm 11.1%

200 0 200 400 600 800 Feet

Highway 280 carries 100,000 cars per day, often at capacity southbound in AM July 9 2002 - Mar 11 2003

Monthly differences (not shown) follow wind and temperature

July 9 2002 - Mar 11 2003

mm/s	Dry	Wet
HNO ₃	16	16
NH ₃	10	16
NO ₂	0.5	2

Ammonia from Cars

 \succ Catalytic converters over-reduce NO, when running fuel rich Emissions factor of ~ 0.05 g/km > 1.8 Mg/km for Highway 280 N¹⁵ isotope signature? > Tahoe impacts > Byron lunch

Conservation targets are well-defined

Impacts

Environmental "Train Wreck"

Silver Creek Hills 1990-2000 Extinct Bay checkerspot populations Heavily degraded habitat > Political pressure on USFWS > Lawsuits Development delays Redesign of reserve > Ongoing restoration

Metcalf Energy Center Site

Metcalf Energy Center (Calpine Corp.)

- > 600 MW gas-fired combined cycle electricity plant
- Emissions ~124 tons NO_x, ~119 tons NH₃ per year
- Mitigation strategy– Preserve habitat through purchase/easements (131 acres), graze cattle
- > Adaptive management, funded by endowment
- Precedent setting!

Worst-case scenario modeling, all emissions as HNO₃

Former-future Cisco World Headquarters (now just another office park, CVRP) 230 tons NO_x/year, ?? ammonia

Widening Highway 101

Range: 25-60 Mg (metric tons) NO_x km⁻¹ yr¹ ~1.8 Mg NH₃ km⁻¹ yr¹ 669 acres of serpentine for CVRP and Highway 101 Purchase being negotiated (not simple)

Habitat Conservation Plan/Natural Communities Conservation Plan HCP/NCCP for Santa Clara County Process starting, MOU signed

Local impacts of a freeway

Bay checkerspot habitat (blue outlines) bisected by Highway 280, carrying 100,000 vehicles/day

Prevailing NW winds carry emissions onto core habitat

What effects on habitat and butterfly?

9,000 larvae in 1997, The last larva in 2003?

Plant transects established in 2001

Percent cover of all species in 0.5x0.5m quadrats (10/transect)

Soil depth (4) in each quadrat

Edgewood Patterns 2001

Lolium cover higher on thicker soils (more nutrients/water available), Plantago opposite

Range: 25-60 Mg (metric tons) NO_x km⁻¹ yr⁻¹ ~1.8 Mg NH₃ km⁻¹ yr⁻¹

Restoration Experiments

- Small-scale (700 m²), replicated
- > Fire Cancelled twice, sorry
- Mowing Effective, known costs and technology
- > Goat grazing Expensive, not as effective

Seeding Plantago appears unecessary

> Reintroduction of butterfly in 3 -5 years

White-rayed Pentachaeta at long-term risk? Only known occurrence West of 280 across from Edgewood Preserve, avoids first 75 meters from freeway

Problem is not going away soon

NO_x Emissions

2001 California Almanac of Emissions and Air Quality Ammonia emissions likely to get worse

Problem is across California

2001 California Almanac of Emissions and Air Quality

Other unique CA habitats at risk?

> Annual Grass Invasions – CSS, Desert, Serpentine grassland > Other grasslands > Lake Tahoe, alpine lakes Vernal pools –Lolium invasions in unmanaged vernal pools Forests and shrublands Statewide screening – CEC funded project

Acknowledgements

- Calpine Corporation
- Waste Management, Inc.
- National Fish and Wildlife Foundation
- Center for Conservation Biology
- > USFWS
- San Mateo Co. Parks and Recreation
- California Native Plant Society, Santa Clara Valley Chapter
- Generations of checkerspot butterfly researchers
- Generations of serpentine grassland researchers
- > Air pollution scientist community

