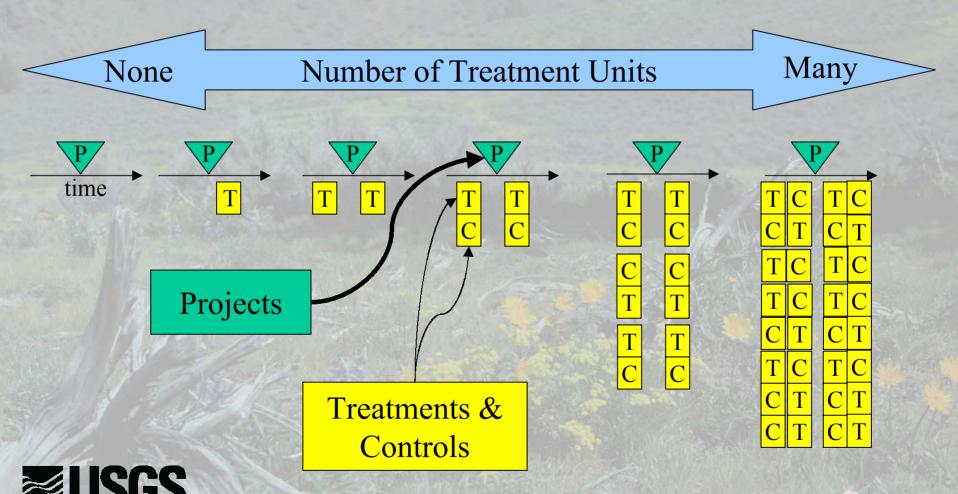

You are the monitor!

- Oxford English Dictionary Definition
 - A person who admonishes,
 warns, or gives advise to
 another about actions.
- Was YOUR vegetation project a success?
 - Were weeds controlled?
 - Did desired plants establish?
 - Did the ecosystem recover?

Success, Warning & Adaptation


Objectives & Treatments Dictate What is Monitored

- Invasive plant control
 - Invasive dominance
- Biological controls
 - Insect or microbe abundance
- Erosion control
 - Sedimentation
 - Aggregate stability
- Biological diversity
 - Relative dominance & Species
 Richness

Monitoring – Research Continuum

From Elzinga et al. 2001 Monitoring Plant & Animal Pop.

Monitoring vs.

- Inventories moment-in-time status
 - No mgmt objectives or changes
- Natural History Studies
 - No mgmt objectives
- Implementation monitoring
 - Was the project conducted as designed?
- Surveillance or trend
 - Evaluate changes; No treatment or mgmt adaptation
- Baseline monitoring
 - Initial standard; No treatment

Validate & Improve Project

- Effectiveness Monitoring
 - Relative to
 - Objectives
 - Other treatments
 - No treatments; Controls
 - Requires
 - Adaptation alternatives
 - Basic Environmental Data
 - Soils, Climate, Elevation,
 Location, Mgmt.

Developing a Monitoring Plan Phase 1

- Scale of the project
 - Soil units, Watershed units
- Objectives of project
 - What will be monitored
 - Short- and Long-term objectives
- First Reality Check
 - What resources are available to collect, analyze and report results?

Developing a Monitoring Plan Phase 2

- Type of monitoring
 - Qualitative, Census, Quantitative sample
- Intensity of monitoring
 - How often?
 - How critical is timing?
- Data collection & metadata
 - Information to be collected
 - Basic site info plus specific data in a form ready for entry or analysis
 - How was data collected?
 - Details that allow future collections using same techniques and/or sites, and provide adequate analysis information.

Developing a Monitoring Plan Phase 3

- Data analysis & interpretation
 - Summary statistics (mean and variation)
 - Comparative treatments (statistical comparisons)
- Final Reality Check Field Tests
 - Do you still have the resources to accomplish all aspects of the monitoring plan.
 - If yes, then proceed
 - If no, then modify or simplify your monitoring plan.

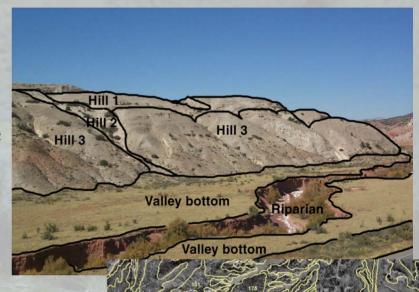
Qualitative Techniques - Photo points

Locations

- Permanent
- Both directions of transects or positions
- Include horizon; Aids relocation
- Camera & Settings
 - 35mm w/ shutter speed & aperture control
 - Set lens size (focal length)
 - Use smallest aperture (f-stop) & slowest shutter speed possible for greatest depth of field

Qualitative Techniques -Estimating Pop. Size, Coverage & Biomass

- Provides gross index of measure and changes over time.
- Use density/cover classes
 - 1-3, 4-10, 11-30, 31-60, 61-100, 101-200, 201-500, etc.
 - Doubling series 1, 2, 4, 8, 16, 32, 64, 128 etc.
 - Cover classes 1-5, 6-25, 26-50, 51-75, 76-95, 96-100
- Biomass visual estimates, reference units/plots, double sampling
- All require training


Study Monuments

- Permanent locations
- Fence or T posts; Bury deeply
- Rebar use caps
- Use landmarks with site and distance to relocate
- Insurance against theft bury metal spikes 1-m from stake. Use metal detector.

Locating Sample Plots

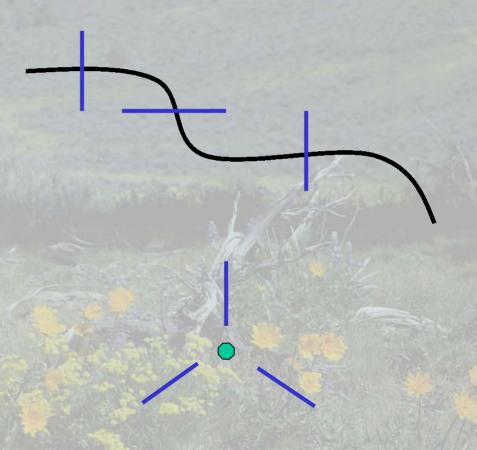
- Stratify the site
 - Watersheds into land shape units (geomorphic units)
 - Land shape units into soil map units
- Disperse plots across unit
 - Randomly locate

What is the sample population?

Objective

1. Weed Control

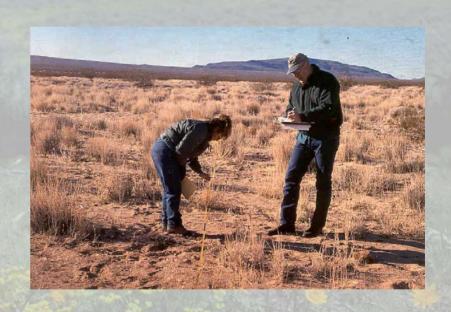
- 2. Revegetation success
- 3. Species recovery
- 4. Biodiversity
- 5. Soil stability


Sample Population

- 1. Weed density or dominance
- 2. Desirable species coverage
- 3. Desirable species coverage
- 4. Species richness & composition
- 5. Aggregate stability

Sampling Layout

- Cross-section Transects
 - Best for crossing boundaries;
 riparian zones, invaded vs. not invaded, etc.
 - Poor for row reseeding
- Spoke Transect set
 - 3, 50m transects provide an efficient cover of 1 ha area.
 - 5 m from the center at 120 degrees


Weed Control Success

Measures

- Coverage
 - Point intercept along the 3 lines; 150 300 points/rep.
 - Or
 - Cover class estimate

And

- Density classes
- Why multiple measures
 - Anticipate weeds becoming rare if treatment worked

Restoration or Revegetation Success

- Density per 1-m² area
 - 50 1-m² plot per line
 - Count # of desirable plants per species
- Coverage by species
 - Cover Class estimates
- Why 2 measures?
 - Anticipate increases
 - Density for establishment Short-term
 - Cover for dominance Long-term

Reseeding Success?

- Grass success on Intermountain shrub grassland
 - Excellent ->0.75plants/ft²
 - Good 0.5 0.75
 - Fair 0.25 0.5
 - Poor < 0.25

Soil Stability

- Measure soil exposure (% bare soil)
 - Only measure the exposed bare soil
 - Veg, litter, biotic crust, rocks are not soil and protect the soil from raindrop impact.
- Soil Aggregate stability
- Sedimentation

Common Failures of Monitoring

Technical Problems

- Poor design
- Observer error too high
- Data lost
 - Poor storage or documentation
 - Cannot decipher
- Lack analysis skills
- Natural fluctuations > project impacts

Institutional Problems

- Lack of support
 - Personnel, budget, priorities, politics
- Resources limit completion
 - Data collected, but not analyzed
- Data are questioned & never used
- Results-to-mgmt adaptation not applied

Future Needs

- Restoration Monitoring Repository
 - Deposit project information, monitoring data,
 reports and finding for particular projects
 - Include metadata
 - Allow us to investigate what has worked and not worked for others

Resources for Monitoring Design

• Elzinga C, Salzar D, Willoughby J, Gibbs J (2001) Monitoring plant & animal populations. Blackwell Sci.

http://www.esf.edu/efb/gibbs/monitor/popmonroot.html

• BLM (1996) Sampling vegetation attributes. BLM/RS/ST-96/002+1730, Denver CO.

