Seasonal Activity and Impacts of Arundo donax

Michael A. Rauterkus and Jodie S. Holt University of California Riverside Department of Botany and Plant Sciences mrauter@citrus.ucr.edu

Arundo donax Biology

- Family: Poaceae
- C₃ Metabolism (Rossa et al. 1998)
- Deep rooting pattern (Sher et al. 2002)
- Vegetative reproduction
 - produces flowers, but no viable seeds have been found in California

Arundo donax Impacts

- Invasive (Caleppe, Hear, NPS)
- Found in riparian zones
 - Forms monocultures

- Displaces native species (Zembal 1990)
- Utilizes large amounts of water (Enright 2000, Iverson 1993)
- Alters fire cycle (Flack & Benton 1998)
- Can cause damage to roads and bridges

What are the seasonal trends in the activity and impacts of *A. donax*?

<u>Common Garden Experiment</u>: -Determine the seasonal photosynthetic activity of *A. donax*.

Field Survey:

- Determine what aspects of the abiotic (nonliving) environment are altered by the presence of *A. donax*.

Common Garden Experiment

- Plants originate from a statewide collection
- Rhizome samples weighed, cleaned, and planted in a randomized complete block design
- Grown until mature, then used for monthly photosynthetic measurements
 - IRGA stomatal conductance, CO₂ assimilation rate, light levels
- Temperature data
- Water use efficiency, photosynthetic rate

Fluctuations in the Photosynthetic Rate of *A. donax*

- There is a strong positive correlation (R² = 0.8446) between the low temperature on a day and the average photosynthetic rate.
 - Weaker correlations between:
 - high temperature on a day and the average photosynthetic rate

 $- R^2 = 0.7884$

• date and the average photosynthetic rate

 $- R^2 = 0.6788$

• light levels and the average photosynthetic rate $-R^2 < 0.0001$

Carbon assimilation rate vs Light intensity 9/2002

PAR (μ mol m⁻² s⁻¹)

Date vs Carbon Assimilation (12/18/2003 - 07/03/2003)

Date

Minimum temperature vs average carbon assimilation rate (12-18-2002 to 7-03-2003)

Wheat ~ 8.5 $\mu mol m^{-2} s^{-1}$ (Lewis et al. 1989)

What are the seasonal trends in the activity and impacts of *A. donax*?

<u>Common Garden Experiment</u>: -Determine the seasonal photosynthetic activity of *A. donax*.

Field Survey:

-Determine what aspects of the abiotic (nonliving) environment are altered by the presence of *A. donax*.

Alteration of sites due to the presence of *A*. *donax*

- 2 sites on different watersheds
- 6 transects at each site (25 m)
- Species cover
- Measurements (every 2.5 m)
 - Soil moisture
 - Soil temperature
 - Light (PAR) levels
 - Soil nitrogen

Percent A. donax cover vs Percent full sun at 1.5m above soil level Oceanside, CA 8/2003

Percent A. donax cover vs Percent full sun at 1.5 m above soil level Riverside, CA 8/2003

Preliminary Results

- Data collected 6/2003 9/2003
- No strong correlations found between % A. donax cover and:
 - Soil nitrogen (NH₄ and NO₃) levels
 - Soil moisture
 - Soil temperature
 - Light levels
 - Distance from water's edge

Preliminary Conclusions

- Through the summer months, *A. donax* does not strongly alter the nitrogen, moisture, or temperature of the soil in which it is found.
 - The lack of strong correlations could be the result of the interactions of the diverse species found at the two sites
- *A. donax* appears able to establish in any location at which it is introduced, regardless of distance from the water.

Other Experiments

- Characterize the relative effects of nitrogen availability on the growth of *A. donax* and native riparian species.
- Characterize the effects of shade on the growth and photosynthetic rates of two native riparian species.

Applications of this work

- Add to the growing knowledge of the physiology of *A. donax*.
- Contribute to the understanding of how native riparian species perform with comparison to and in the presence of *A. donax*.
- Be useful in timing the treatment of *A*. *donax* and planting of native species.

Acknowledgements

- Dr. Jodie Holt
- Dr. Rana Tayyar
- Coworkers:
 - Lauren Quinn
 - Ginger White
 - Robin Marushia
 - Jared Stephens
 - Ken Murillo
 - Patrick Fattouch

- University of California
 Riverside Department of
 Botany and Plant Sciences
- UC Exotic/Invasive Pests and Diseases Research Program