Assessing non-target vegetation response in the wake of perennial pepperweed (*Lepidium latifolium*) eradication at the Cosumnes River Preserve

Rachel A. Hutchinson Joshua H. Viers James F. Quinn The Information Center for the Environment, Dept. of Environmental Science and Policy, UC Davis

rahutchinson@ucdavis.edu

Perennial Pepperweed Control Project

Determine an effective eradication method while monitoring the effect of experimental treatments on existing plant communities.

Treatment success:

Mow/broadcast spray herbicide application (Rodeo[®] and Telar[®])

Non-target vegetation surveys:

Riparian Communities: Rodeo[®] Grassland Communities: Telar[®]

Seed bank experiment:

L. latifolium remained in the seed bank post-eradication

Lepidium latifolium at the Cosumnes River Preserve

Number of Pepperweed Patches

Perennial Pepperweed Plot Treatments	#of Plots	
Controls -28 Pepperweed-Control -24 No Pepperweed -Control -16 Mow-Control -16 Cut-Stem-Control	84	
Mow/Broadcast -16 Mow+Broadcast Telar® -16 Mow+Broadcast Rodeo®	32	
Cut-Stem -16 Telar [®] (low concentration treatments only) -32 Rodeo [®] (low and high concentration treatments)	48	1. S. V.
Tarp sites -12 mow+tarp -12 mow+rototill+tarp	24	
TOTAL	188	1

Treatment Results

Mow/Broadcast Treatment Results

Both mow/broadcast spray treatments significantly reduced perennial pepperweed populations in all treated experimental plots

Mow treatment

Grassland

Rodeo[®] Treatment

Riparian

Datura stramonium

Non-target vegetation

Eschscholzia californica

191 Species100 Native91 NonNative

(Five on Cal-IPC High Impact list)

98 Annual 73 Perennial 9 Tree/Shrub 3 Vine

Triphysaria eriantha

Mimulus pilosus

Alpha Diversity

Grassland:

•Species richness increased in 2006 after initial eradication in grassland communities

•Species richness also increased in mow/control plots

Riparian:

•Species richness increased in 2006 after initial treatment, and continued to increase after two treatment cycles

•Species richness also increased in control plots!!

Grassland % Cover in Mow Treatment Plots

• Native cover does not change significantly in Mow/Telar[®] plots

•Native cover decreases (p=0.06) in plots treated with Rodeo[®] after two years of treatment

•Non native cover decreases in both Mow/Rodeo® and Mow/Telar® plots between 2006 and 2007

Riparian

% Cover in Mow Treatment Plots

Riparian Native Cover

 Native Cover significantly decreased in Mow/Telar[®] plots in both 2006 and 2007

 Native Cover significantly decreased in Mow/Rodeo® plots after two years of consecutive herbicide application

 Non Native cover increased in Mow/Rodeo[®] plots from 2006 to 2007

 Non native cover decreased in Mow/Telar[®] plots post-treatment

* p < 0.05

Riparian Non Native Cover

Seed Bank Experiment

Soil samples were collected in late summer 2006 from experimental treatment plots.

Samples were potted and germinants were identified, counted and removed from pots in a lath house for one year.

Pepperweed in the Seed Bank

Seed Bank Results

Grassland:

A significant proportion of germinants were non-native annual species.

Riparian:

Significantly more native, perennial species germinated in riparian seed bank pots.

Conclusions

Treatment success:

Mow/broadcast spray treatments Cut-stem treatments?

Non-target vegetation surveys:

Rodeo[®] may be a better herbicide to use in riparian communities Telar[®] may be a better herbicide to use in grassland communities

Seed bank experiment:

Pepperweed seeds viable in plots where it was "eradicated"

The Future of Pepperweed at The Cosumnes River Preserve

Large scale treatment at the preserve to stop spread while reducing *Lepidium* impact

Tarping Results: June 2008

Restoration?

Acknowledgements

CALFED Bay Delta ERP-02D-P66 The Cosumnes River Preserve

http://baydelta.ucdavis.edu/pepperweed/

(under construction)

Field and office support:

Joel Bonilla, Jennifer Buck, Claire Stouthamer, Betsy Harbert, Ingrid Hogle, Andrew Holguin, Anne Jacobs, Michelle Jensen, Lisa Kashiwase, Elizabeth Lee, Whitney Miller, Becky Waegell, and Nathan Weaver.

rahutchinson@ucdavis.edu

⊖ Ludwigia growing over tarp installed for pepperweed eradication ⊖