Ecological Correlates of Fountain Grass in Coastal Sage Scrub

Lynn Sweet and Jodie Holt
U.C. Riverside
California Invasive Plant Council Symposium
October 14, 2010
Fountain grass (*Pennisetum setaceum* (Forssk. Chiov.))

- Native to North Africa and the eastern Mediterranean region
- Naturalized or invasive in Hawaii, Arizona, Nevada, Australia and Southern Africa
- Horticultural introduction
- Perennial C₄ bunchgrass
 - Drought-tolerant, “warm-season”
Fountain Grass Problems

- Invades dry landscapes

- Alters fire cycles and microhabitats (Hawaii)

- Facilitates a conversion from dry forest to grassland (Hawaii) (Blackmore and Vitousek 2000)

- Interferes with recruitment of native species (Hawaii)

- No published information on fountain grass ecology in California
Fountain Grass in California

- First wild-land record from 1917 in Los Angeles
- Extensive stands exist on roadsides
- Localized escaped populations at undisturbed sites in coastal sage scrub (CSS), especially in post-fire areas
Research Goals

- Improve knowledge about areas susceptible to invasion by fountain grass
 - Where in CSS is it most likely to invade?
 - Examine physical and biological correlates

- Overall study goal: examine changes in communities with fountain grass invasion over several study years
Sites and Site Selection

- Experiment Replicated in 3 Regions
 - Santa Monica Mountains (SAMO)
 - Riverside County
 - Eastern San Diego

Selection of Sites
- >10m invasion
- Wild populations located in undisturbed CSS

(Riverside County site results not reported here)
(2010 Data not reported here)
Materials and Methods

- **3 transects per site**

- **Sampling**
 - Stratified random along transect at 2m intervals

- **2 plots of each cover class per transect**
 - **Cover classes of fountain grass:**
 - 0%
 - 1-33%
 - 33-66%
 - 66-100%

- **Data**
 - % cover of all species, rock, bare ground & litter
 - Site characteristics and soil samples
ANOVA Results: Santa Monica Mountains

Santa Monica Mountains Sites: Percent Cover of Native and Exotic Species in Plots of 4 Cover Classes of Fountain Grass

Santa Monica Mountains Sites: Richness of Native and Exotic Species in Plots of 4 Cover Classes of Fountain Grass
ANOVA Results:
San Diego County

San Diego Sites: Percent Cover of Native and Exotic Species in Plots of 4 Cover Classes of Fountain Grass

San Diego Sites: Richness of Native and Exotic Species in Plots of 4 Cover Classes of Fountain Grass
Regression Results

- Functional groups impacted differently
- Percent cover declines
 - Native annuals (SD + SAMO)
 - Perennial grasses (SAMO)
 - Perennial forbs (SD)
 - Exotic annuals (SD)
- Richness declines
 - Native annual and perennial grasses (SAMO)
Discussion

- Why are there declines in native and exotic cover as fountain grass increases?
 - Preemption of (collectively “space”):
 - Light, Water, Nutrients

- Why is there a decline in richness as fountain grass increases?
 - Change in type, frequency and characteristics of safe sites
 - This might change recruitment conditions for species
Regional Differences

- Why were results different in the two regions?

- Can we explain these results in terms of...
 - Biotic characteristics or community structure?
 - Physical or abiotic characteristics?
Regional Richness Differences: Functional Groups

SAMO
- 52 TOTAL SPECIES
- 5 EXOTIC FORB
- 4 EXOTIC GRASS
- 6 NATIVE FORB
- 32 NATIVE GRASS

SAN DIEGO
- 65 TOTAL SPECIES
- 10 EXOTIC FORB
- 8 EXOTIC GRASS
- 11 NATIVE FORB
- 31 NATIVE GRASS
- 5 NATIVE SHRUB
San Diego vs. Santa Monica Mountains

- San Diego- higher number of native species overall but similar native species richness average *per plot*
- San Diego- higher mean cover and richness of exotic species overall
- San Diego- similar richness of native and exotic species
- Santa Monica Mountains- higher ratio of native: exotic richness
Principal Components Analysis: Physical Characteristics

Eigenvectors

<table>
<thead>
<tr>
<th></th>
<th>PCA 1</th>
<th>PCA 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bareground</td>
<td>-0.22157</td>
<td>-0.60132</td>
</tr>
<tr>
<td>Rock</td>
<td>0.58153</td>
<td>0.03149</td>
</tr>
<tr>
<td>Litter</td>
<td>0.05015</td>
<td>0.61553</td>
</tr>
<tr>
<td>WC % In soil</td>
<td>0.55997</td>
<td>-0.02313</td>
</tr>
<tr>
<td>% Rock by Weight In soil</td>
<td>-0.53267</td>
<td>0.22055</td>
</tr>
<tr>
<td>Aspect%</td>
<td>-0.11361</td>
<td>0.45756</td>
</tr>
</tbody>
</table>

Regions significantly split by variables making up PC1 (one-way AOV, p<0.01)
Conclusions

- Declines and differences noted, especially comparing low and high cover classes.
- Regional differences may explain different community responses.
 - Higher Water Content = non-limiting resource?
 - Further investigation necessary.
- There is no “before” here.
 - Results must be considered correlation.
 - Longer-term data might reveal whether results are due to fountain grass impacts.
Broader Implications

- Fountain grass can invade intact coastal sage scrub
- Fountain grass can reach 100% cover
- All invasive populations were found on southwest-facing slopes
Thanks to...

- Holt Lab
 - Kai Palenscar, Rana Tayyar, Kiana Monroe, Katie Johnson, Polly Johnson, Janet Garcia, Chi, Jake and Robin Marushia

- Field Help
 - Sara Jo Dickens
 - Kris Weathers

- Plant ID and Other Assistance
 - Andy Sanders (UCR Herbarium)
 - Bahman Ehdaie (UCR)
 - Edith Allen (UCR)

- Site Permission and Local Knowledge
 - Cathy Chadwick (Endangered Habitats Conservancy)
 - Tim Dillingham (DFG)
 - Suzanne Goode (CA Parks)
 - John Martin (USFWS)
 - Jason Price (DFG)
 - Tarja Sagar (SAMO NPS)

- Funding from
 - Shipley-Skinner Riverside County Endowment (2009, 2010)
 - UCR Botany & Plant Sciences Department

Natives fight back!
Initial 2010 Results

- Patterns similar

- Recruitment seen into 0% cover areas
 - Formerly outside the invasion “boundary”

- Abiotic characteristics - at Mullholland
 - No differences in soil temperature or moisture correlated with cover of fountain grass