Remediating the Microbial Legacy
Effects of Invasive Grasses for Restoration

Brooke Pickett (PhD Candidate)
Emma Aronson and Irina Irvine
Department of Plant Pathology, UC Riverside
Background

• *Phalaris aquatica* is an invasive perennial bunchgrass in the Santa Monica Mountains

• 8 years of removal over 25 acres, but native species recruitment was minimal

• Does lack of native growth suggest soil legacy effects of Phalaris?

• Legacy effects
Experiment 1: Greenhouse Study
My Research Questions

Do native and invasive plants differ in growth rate and size in native vs. post-invasive soil?

Which native species will survive best in the soil after invasive removal?
1 Invasive: Phalaris aquatica

3 CSS Natives:
Artemisia californica
Salvia leucophylla
Baccharis pilularis
1. Collected post-invasive and native soil
2. Sowed 100 seeds per species into separate pots filled with either native or post-invasive soil (10 reps each)
3. After seven months of growth in the greenhouse, the seedlings were dried and measured
Phalaris biomass was larger in native vs. post-invasive soil.
*Artemisia* Total Biomass and Length in Soil Type

- *Artemisia* biomass was much higher in native soil than post-invasive soil

- The length of *Artemisia* between both soil types was still not significantly different
Phalaris length was larger in native vs. post-invasive soil.
Visual Representation of Graphs: Change in plant growth with soil type

Artemisia
Post-Invasive Soil

Artemisia
Native Soil

Phalaris
Post-Invasive Soil

Phalaris
Native Soil
Conclusions

• The soil type did have an effect on plant species growth
• *Salvia* and *Baccharis* were not affected by soil type
• *Phalaris* consistently had the greatest growth in native soil
• *Artemisia* biomass was higher in native soil
Experiment 2: Field Study
My Research Questions

Are differences in native plant growth explained by host dependent changes in the microbial community?

Does remediation of soil microbial conditions through inoculation improve restoration in post-invasive sites?
Inoculation Experiment

- I grew the same three native species in commercial potting mix inoculated with native soil or sterilized native soil.
- Transplanted 180 plants into the 25 acre post-invasive grass site.
- Plant height measurements were taken over 7 months of growth.
- Soil cores for 16S sequencing were taken every other month.
- 30 plants destructively sampled in August.

Same abiotic conditions

Inoculated with Unsterilized Soil
- Native microbes

Inoculated with Sterilized Soil
- Invasive microbes

Post invasive soil
Set-up: 3 Blocks with 10 Plots Each

Each block has:
• 6 plots that are single-species plots with 6 plants each
• 4 plots that are mixed-species plots with 2 of each plant species (6 plants total)
• Plots do not mix plants grown in sterilized native soil vs. unsterilized native soil
The most plant deaths occurred for *Artemisia* in sterilized plots.
Artemisia Plant Height with Unsterilized vs. Sterilized Native Soil Inoculum

Artemisia grown in unsterilized native soil inoculum are larger.
Baccharis Plant Height with Unsterilized vs. Sterilized Native Soil Inoculum

Baccharis grown in unsterilized native soil inoculum are larger

R² = 0.9198

R² = 0.9292

P = 0.007
PCoA of February and April Soil Cores

The treatment plots (orange and green) are not different from each other, but the native and post-invasive soils (blue and red) are different from each other and treatment plots.
The roots (blue) have a different microbial composition than the rhizosphere soil (red)
The sterilized treatment plots (green) are distinct from the unsterilized treatment plots (orange) especially for rhizosphere soil.
Rhizosphere Soil is more OTU rich

Taxa plots are being generated to help explain differences in microbial composition
Conclusions

• Native plant growth was affected by native soil inoculum (unsterilized or sterilized)
• Artemisia had less mortality and higher growth after inoculation with unsterilized native soil
• Instead of just seeding a plot, we can transplant a native species with its own soil to insure survival
• The microbial composition of the roots and rhizosphere are different
• The microbial composition of plants grown in the unsterilized vs. sterilized soil treatment are different, esp. in rhizosphere soil
• Taxa plots of the rhizosphere soil and the native soil may shed some light on the difference in plant growth between unsterilized and sterilized treatment plots
Restoration starts with the soil

• Ensure native plant establishment in post-invasive sites
• The Salvia and Baccharis can be used as nurse species
• Perhaps isolate and use certain microbes for inoculations in restorations
• Greater understanding of plant/microbe symbioses in invaded habitats may improve restoration
Next Steps

Using primers for arbuscular mycorrhizal fungi (AMF) and fungal pathogens to taxonomically identifying soil fungi (just finished troubleshooting this)

*P. aquatica* root with mycorrhizal and fungal pathogen infections
Acknowledgements:

Eric Bullock
Stephanie Cramer
Taryn Barsotti
Geoff Logan
Dr. Chelsea Carey
Dr. Mia Maltz
Keshav Arogyaswamy
Nat Pombubpa

Funding Sources:

National Park Service
National Science Foundation
Shipley Skinner Endowment
Mycological Society of America