Barb goatgrass (Aegilops triuncialis L.) is an invasive annual grass from the Mediterranean region that can strongly decrease both native plant biodiversity and the forage value of grasslands in California. The Cosumnes River Preserve has used fire as a grassland management tool to control invasive grasses like barb goatgrass and to enhance biodiversity. In June 2005, The Nature Conservancy and CAL FIRE conducted a 120-ha prescribed burn at the Howard Ranch, a cattle ranch with large seeded grasslands. We measured four paired plots in burned and unburned areas to measure the response of the plant community to the fire. Additionally, we tested for percent germination of goatgrass seeds in burned and unburned plots. One year after the burn, goatgrass cover in burned plots was 31% compared to 21% in unburned plots. This reduction in goatgrass cover was still strong two years after the burn (burned = 6%, unburned = 26%) and weaker, but still significant for another three years. The burn also reduced percent germination of goatgrass seeds by 99%. The native plant community responded positively to the burn treatment in the first year following the burn with 33% native cover in burned plots versus 13% cover in unburned plots, but the effect was not detectable in subsequent years. Our study shows that a single springtime burn can result in a short-term boost in native species cover, reduced seed germination of barb goatgrass to near zero and reduced cover of goatgrass plants to five years after the burn.

Barb goatgrass is a winter annual grass from the Mediterranean region. The inflorescence is spike-like, with leathery inflorescence glumes encasing mature spikelets. The inflorescences are usually dispersed as a single unit, but spikelets remain intact even if separated from the spike. Most spikelets contain two seeds, with about 2.5 times larger than the other half. Both spikelets contain one seed, and the glumes can inhibit germination of the small seed, which may ensure that a fraction of seeds remain in the soil seed bank (Dyer 2004).

Landscape-scale weed control methods in California grasslands are more limited than those available for control of spot infestations and include grazing, fire, and biological control. Grazing has rarely yielded satisfactory barb goatgrass control. Biocontrol agents have not been developed, and likely will not be pursued due to the close relationship between goatgrass and cultivated wheat.

We recorded the highest temperature reached within each burned plot on two 1 mm tall copper pipes paired with heat-sensitive paint (temp. range 93C (200F) – 343 C (650F)) at soil surface and 1 m above the soil surface. Seed heads were collected from burned and unburned plots for use in germination trials. We conducted three separate germination trials in the lab on an equal number (n = 10) of both large and small seeds. We ran three separate trials of three germination attempts of 20 seeds for all four burned and two of the unburned microplots.

Materials and Methods

This study was conducted on a 5,000-ha parcel located in eastern Sacramento County, CA, USA (38°38’N, 121°02’W; elevation 75 m). The climate of this region is Mediterranean with average annual rainfall of 56 cm occurring between the months of October and May, while less than 2 cm of rain falls during the summer months. Prior to the burn, we established four burned and four unburned treatment plots within large patches of goatgrass on the site. Each plot was approximately 15 x 20 m in size. Half of the plots received a single burn treatment in June 2005, which was conducted separately from the larger 120-ha burn. Within each burned and unburned plot, we measured goatgrass cover along a 35cm-wide x 1.0m-long transect as well as overall plant cover within 35 cm x 70 cm permanent quadrats. We validated the monitoring prior to conducting the burn in June of 2005 and at the same time of year for five years after the burn.

Figure 1: Absolute percent cover (mean ± SE) of barb goatgrass in burned and unburned plots before burning and for five subsequent years.

Results

Fire temperature was on average 300F higher at the soil surface than at 1 m above the ground (ground = 500F ± 10SE; 1 m = 200F ± 10SE; p<0.01). Exposure to visible flames was only ~1 second; however, goatgrass inflorescences were knocked to the ground by the flaming front and continued to experience the higher temperatures at the soil level for a much longer period. Consequently, the burn decreased germination of goatgrass seeds by 99% (unburned germination rate = 73±1% ± 0.5SE; p<0.0001). Barb goatgrass cover in burned plots was significantly lower than in unburned plots for five consecutive years after treatment (YAT) (Figure 1). By the fifth YAT, burned plots still had half the goatgrass cover of unburned plots. Native plant cover increased one YAT, but did not vary between treatments in later years (Figure 2). Exotic annual grass (EAG) cover, whether including goatgrass or not, did not significantly vary between treatments within any year (data not shown). No clear patterns emerged for total plant cover, although burned plots had lower 2 YAT (burned 109% ± 7SE, unburned 132% ± 7SE, p<0.04) and 5 YAT (burned 81% ± 7SE, unburned 100% ± 7SE, p<0.04).

Discussion

Our results show that a single burn at the appropriate time of year can have lasting affects on goatgrass populations. Goatgrass cover was significantly reduced by a single burn for at least five years following the burn. Consistent burns have been used to control goatgrass (Marty 2008), native species cover increased in the burned plots one year after the burn but returned to levels indistinguishable from the unburned plots by the next year. While goatgrass seed heads in burned plots remained relatively intact after the fire (J. Marty pers. comm.) the fire clearly damaged the seeds. Differences from previous research suggest that temperatures documented in this burn at 1m would be insufficient to permanently kill given the short exposure time (Sweet et al. 2008). We speculate the main damage to the goatgrass seeds occurs after the seed head falls to the ground and experiences the much higher temperatures we recorded there. Once contaminated, the seed head continues to smolder after the flame passes, leading to seed mortality.

The success of a single burn at this site (Figure 1) differs from results elsewhere (DiTomaso et al. 2001). Many factors potentially affect efficacy of prescribed fire. Thicker thatch present at the time of the burn has been correlated with increased burn efficacy, presumably by slowing the down the flame front and increasing fire temperature (Kiyser et al. 2008). Although the exact factors which led to the success of a single burn are unknown, this success does provide encouraging evidence for the use of fire to control goatgrass as burn regulations become stricter.

Our research shows that prescribed burning is an effective tool for reducing cover of problematic annual grasses like barb goatgrass while also promoting native diversity. Prescribed burning is becoming increasingly challenging in the wildland-urban interface as air quality and liability issues become even more prevalent. It is important to maintain the ability to conduct burns when few other options for large-scale weed removal remain.

Conclusions

Our research shows that a single late-spring burn
• reduced goatgrass germination to near zero
• reduced goatgrass cover for up to five years post-burn
• increased native plant cover for one year post-burn

Acknowledgements

We are indebted to all of the UC ANR crews and technicians who worked on this project and CNR, FORS for planning and conducting the prescribed burn. We also want to thank the CAL FIRE prescribed burn crew for planning and conducting the prescribed burn. We also want to thank the CAL FIRE prescribed burn crew for planning and conducting the prescribed burn.