Assessing Spatio-temporal Changes of Invasive Algerian Sea Lavender (Limonium ramosissimum) in San Francisco Bay Wetlands

Kerstin Kalchmayr*, Barbara Holzman, Ellen Hines and Katharyn Boyer.
San Francisco State University, Departments of Geography & Environment, and Biology *kerstink@mail.sfsu.edu

Introduction

Limonium ramosissimum (LIRA) is a native of Western Mediterranean coastal marshes and was first recorded growing in San Francisco Bay wetlands in 2007. Early concerns prompted immediate research to describe the species’ life history and behavioral traits to help inform management strategies. These early studies provided essential baseline information on LIRA’s ability to invade and impact San Francisco Bay salt marshes (Archbald and Boyer, 2014a and b; Cleave 2012). However, as these studies were conducted over a short-term period they provided only a limited view into the ecological behavior of the species whose effects can change dramatically over time (Strayer et al. 2006). This study lengthens the view of LIRA’s increasing presence.

Study Objectives:
In this study we return to the study sites established 7 years ago to assess:
1. Changes in abundance and distribution of LIRA populations throughout the Bay-Area.
2. Changes to species composition and soil properties.

Methods

This study repeats the 2008-2010 methodology of Archbald and Boyer (2014a).

Bay-wide mapping:
Our study resurveyed and remapped 16 of the 20 locations previously mapped by Archbald and Boyer (2014a)(Figure 1). LIRA population patches were mapped using a handheld Trimble GeoXH GPS. At each of the patches, percent cover of LIRA was ocularly estimated. GPS data were post processed in Trimble Pathfinder Office, and ArcMap 10.2.2 was used to extract area and percent cover data from the polygon layers. Changes in area and percent cover were examined.

Mensurate surveys:
Mensurate surveys were conducted at three established study sites in San Mateo County (Figure 2) in August 2015 to determine LIRA’s impacts on species composition and soil properties. Archbald and Boyer (2014a) established 30 survey plots at each of the study sites in August 2015 to determine LIRA’s impacts on species composition and soil properties. Archbald and Boyer (2014a)(Figure 1). LIRA population patches were mapped using a handheld Trimble GeoXH GPS. At each of the patches, percent cover of LIRA was ocularly estimated. GPS data were post processed in Trimble Pathfinder Office, and ArcMap 10.2.2 was used to extract area and percent cover data from the polygon layers. Changes in area and percent cover were examined.

Mensurate surveys:
Mensurate surveys: Mensurate surveys were conducted at three established study sites in San Mateo County (Figure 2) in August 2015 to determine LIRA’s impacts on species composition and soil properties. Archbald and Boyer (2014a) established 30 survey plots at each of the study sites in August 2015 to determine LIRA’s impacts on species composition and soil properties. Archbald and Boyer (2014a)(Figure 1). LIRA population patches were mapped using a handheld Trimble GeoXH GPS. At each of the patches, percent cover of LIRA was ocularly estimated. GPS data were post processed in Trimble Pathfinder Office, and ArcMap 10.2.2 was used to extract area and percent cover data from the polygon layers. Changes in area and percent cover were examined.

Mapped Results:

Preliminary Results

Over the last 7 years LIRA populations throughout San Francisco Bay have significantly increased in size and density. As observed by Archbald and Boyer (2014a), LIRA does well in disturbed sites especially where wetland restoration efforts have taken place. Newly restored sites are increasingly vulnerable to LIRA invasion. Ongoing weeding efforts at smaller sites have shown to be effective in curbing population explosions. Vegetation surveys showed that LIRA increased in density in plots that had not been invaded in an earlier survey. Native species decreased where LIRA was previously present and increasing. However, as all species were observed to be decreasing in previously invaded plots it is highly likely that the current extreme drought may have had some influence on native species abundance and distribution. It is possible that LIRA may be more adaptive to extreme drought conditions compared to native species. An additional vegetation survey will take place in March 2016 to give further insights into the above conclusions.

Discussion

LIRA is an aggressive invasive species in Bay Area wetlands and should be targeted for removal to prevent damage to native species. This study is currently underway, future results will include soil analyses as well as multivariate analyses to learn more about LIRA in Bay Area wetlands.

Conclusion

Acknowledgements
Many thanks to the Invasive Spartina Project for allowing access to field sites and to dear friends: Anthony Copioli, Darren Blackburn and Laura Branagan for field assistance. Thank you to Gavin Archbald who has been tremendously helpful and supportive of this study, and to SFSU-COSE who also provided a small travel grant to attend this conference.

Works cited: