Matching restoration tools to rare plant recovery needs in invaded Channel Island landscapes

Kathryn McEachern
Research Ecologist
U.S. Geological Survey
The California Channel Islands
Santa Rosa Island 2014
Edward Demmond photo
Santa Cruz Island 2005

Dan Richards photo
Research Questions

1. Where are the rare plant taxa?
2. How do they compare to the past?
3. How are populations doing now?
4. Are there major threats to populations that we can do something about?
Research Methods

Herbarium archives

Field surveys

Repeated counts

Demographic monitoring

Experiments
<table>
<thead>
<tr>
<th>15 Listed Taxa</th>
<th>Life History</th>
<th># Pops</th>
<th>Islands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilia tenuiflora ssp. hoffmannii</td>
<td>Annual</td>
<td>2</td>
<td>SRI</td>
</tr>
<tr>
<td>Malacothrix indecora</td>
<td>Annual</td>
<td>6</td>
<td>SCI SRI</td>
</tr>
<tr>
<td>Malacothrix squalida</td>
<td>Annual</td>
<td>1</td>
<td>SCI</td>
</tr>
<tr>
<td>Phacelia insularis var. insularis</td>
<td>Annual</td>
<td>3</td>
<td>SRI SMI</td>
</tr>
<tr>
<td>Sibara filifolia</td>
<td>Annual</td>
<td>2</td>
<td>SCT SCL (SCI)</td>
</tr>
<tr>
<td>Thysanocarpus conchuliferus</td>
<td>Annual</td>
<td>8</td>
<td>SCI</td>
</tr>
<tr>
<td>Boechera hoffmannii</td>
<td>Perennial</td>
<td>6</td>
<td>SCI SRI (AI)</td>
</tr>
<tr>
<td>Castilleja mollis</td>
<td>Perennial</td>
<td>2</td>
<td>SRI</td>
</tr>
<tr>
<td>Dudleya nesiotica</td>
<td>Perennial</td>
<td>1</td>
<td>SCI</td>
</tr>
<tr>
<td>Dudleya traskiae</td>
<td>Perennial</td>
<td>10</td>
<td>SBI</td>
</tr>
<tr>
<td>Crocanthemum greenei</td>
<td>Perennial</td>
<td>36</td>
<td>SCI SRI SCT</td>
</tr>
<tr>
<td>Galium buxifolium</td>
<td>Subshrub</td>
<td>26</td>
<td>SCI SMI (SRI)</td>
</tr>
<tr>
<td>Arctostaphylos confertiflora</td>
<td>Shrub</td>
<td>3</td>
<td>SRI</td>
</tr>
<tr>
<td>Berberis pinnata ssp. insularis</td>
<td>Shrub</td>
<td>5</td>
<td>SCI SRI (AI)</td>
</tr>
<tr>
<td>Malacothamnus fasciculatus var. nesioticus</td>
<td>Shrub</td>
<td>6</td>
<td>SCI</td>
</tr>
</tbody>
</table>

AI = Anacapa Island, SCI = Santa Cruz, SRI = Santa Rosa, SMI = San Miguel, SBI = Santa Barbara, SCT = Santa Catalina, S CL=San Clemente; () presumed extirpated.
Current Condition

Few
Small
Isolated
Declining

Desired Future

Many
Large
Connected
Growing

Constraints
Constraints

- Few plants
- Poor seed production
- Low seed viability
- Low recruitment
- Invasive competition
- Altered canopy
- No seed bed
- Isolation
- Habitat fragmentation
- Habitat loss
- Pollinator limitation
- Herbivory & trampling
- Erosion
- Changed climate

Recovery tools

- Seed increase
- Seed banking
- Hand pollination
- Tissue culture
- Augmentation
- Invasive control
- Habitat management
- New populations
- Animal eradication
- Monitoring
Constraints

- Few plants
- Poor seed production
- Low seed viability
- Low recruitment
- Invasive competition
- Altered canopy
- No seed bed
- Isolation
- Habitat fragmentation
- Habitat loss
- Pollinator limitation
- Herbivory & trampling
- Erosion
- Changed climate

Recovery tools

- Seed increase
- Seed banking
- Hand pollination
- Tissue culture
- Augmentation
- Invasive control
- Habitat management
- New populations
- **Animal eradication**
- Monitoring
Santa Rosa and Santa Cruz Island recovery scenarios
Scenario 1 – Passive Recovery
Population expansion

Torrey pine
Pinus torreyana var. *insularis*

Constraints
- Herbivory & trampling

Recovery tools
- ECOSYSTEM
- Animal eradication
Moving out of refugia

Jolla Vieja Canyon endemics, Santa Rosa Island

Constraints

- Herbivory & trampling

ECOSYSTEM

Recovery tools

- Animal eradication
270% Average percent change in abundance
Scenario 2 – Benefitting from openness without herbivores
Doesn’t like pigs or leaf litter

Island jepsonia
Jepsonia malvifolia

Constraints
- Herbivory & trampling

ECOSYSTEM

Recovery tools
- Animal eradication
New Constraint – increased litter?

Constraints
- Altered canopy

Recovery tools
- Habitat management
Scenario 3 – Changed ecosystem processes
Island oak
Quercus tomentella

Lost water cycle

Constraints
- Altered canopy
- Erosion
- No seed bed
- Few isolated populations
- Herbivory and trampling
- No fog drip

Recovery tools
- Habitat management
- New populations
- Animal eradication
- Habitat management

HABITAT

LANDSCAPE

ECOSYSTEM
Santa Rosa Island
Soledad Ridge
Cloud forest restoration
Capture fog, slow erosion, rebuild seedbed, plant
Lost pollinators and fire

Island bush mallow
Malacothamnus fasciculatus var. *nesioticus*

Constraints
- Few plants
- Poor seed production
- Low seed viability
- Few isolated populations
- Pollinator loss
- Changed fire regime

Recovery tools
- Augmentation
- Hand pollination
- New populations
- Animal eradication
- Fire management
Out-plant Experiment
Island bush-mallow planting survival

December 2004 - April 2008

- European field
- Portezuela
- Alberts
- Valley Anchorage
Plant new populations

January 2010

July 2011

Karen Flag photos
Status Jan 2016
6 natural populations
14 new sites
350 new plants
Santa Cruz Island bush mallow
Malacothamnus fasciculatus var. nesioticus

Santa Cruz Island

Site status

- Native
- Planted 2004-2015
Good vegetative recruitment
Poor recruitment from seed
Island Phacelia
Phacelia insularis

Changed climate, Competition

Constraints
- Invasive competition
- Changed climate

Recovery tools
- Habitat management
- Seed banking

Edie Raburn photo
Looking for island Phacelia 2003
Competition and climate change
Bromus clearing and Phacelia growth

From Levine McEachern and Cowan 2010
Habitat restoration
Reduce grass and thatch, restore lupine scrub

October 2015
Current Condition Desired Future

Few
Small
Isolated
Declining

Constraints

Many
Large
Connected
Growing
Constraints - Population

- Few plants
- Poor seed production
- Low seed viability
- Low recruitment
Constraints - **Habitat**

- Few plants
- Poor seed production
- Low seed viability
- Low recruitment
- Invasive competition
- Altered canopy
- No seed bed
Constraints - Landscape

- Few plants
- Poor seed production
- Low seed viability
- Low recruitment
- Invasive competition
- Altered canopy
- No seed bed
- Isolation
- Habitat fragmentation
- Habitat loss
Constraints - **Ecosystem**

- Few plants
- Poor seed production
- Low seed viability
- Low recruitment
- Invasive competition
- Altered canopy
- No seed bed
- Isolation
- Habitat fragmentation
- Habitat loss
- Pollinator limitation
- Herbivory and trampling
- Erosion
- Changed climate
Constraints

- Few plants
- Poor seed production
- Low seed viability
- Low recruitment
- Invasive competition
- Altered canopy
- No seed bed
- Isolation
- Habitat fragmentation
- Habitat loss
- Pollinator limitation
- Herbivory and trampling
- Erosion
- Changed climate
Recovery tools

Seed increase
Seed banking
Hand pollination
Tissue culture
Augmentation

Invasive control
Habitat management
New populations
Animal eradication
Monitoring
Constraints
- Few plants
- Poor seed production
- Low seed viability
- Low recruitment
- Invasive competition
- Altered canopy
- No seed bed
- Isolation
- Habitat fragmentation
- Habitat loss
- Pollinator limitation
- Herbivory & trampling
- Erosion
- Changed climate

Recovery tools
- Seed increase
- Seed banking
- Hand pollination
- Tissue culture
- Augmentation
- Invasive control
- Habitat management
- New populations
- Animal eradication
- Monitoring
Collaborators

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieter Wilken</td>
<td>Julie Christian</td>
</tr>
<tr>
<td>Andrew Wyatt</td>
<td>Jonathan Levine</td>
</tr>
<tr>
<td>Connie Rutherford</td>
<td>Stephanie Yelenik</td>
</tr>
<tr>
<td>Tim Thomas</td>
<td>Nancy Vivrette</td>
</tr>
<tr>
<td>Katie Chess</td>
<td>Ken Niessen</td>
</tr>
<tr>
<td>Pat Corry</td>
<td>Diane Thomson</td>
</tr>
<tr>
<td>Steve Junak</td>
<td>Emily Schultz</td>
</tr>
<tr>
<td>Lyndal Laughrin</td>
<td>Ken Owen</td>
</tr>
<tr>
<td>Matthew Barmann</td>
<td>Kevin Thompson</td>
</tr>
<tr>
<td>Clark Cowan</td>
<td>Denise Knapp</td>
</tr>
<tr>
<td>Karen Flagg</td>
<td>John Knapp</td>
</tr>
<tr>
<td>Don Hartley</td>
<td>Numerous students</td>
</tr>
<tr>
<td>Sarah Chaney</td>
<td>Many many volunteers</td>
</tr>
<tr>
<td>Dirk Rodriguez</td>
<td></td>
</tr>
</tbody>
</table>

Major Funding

- National Park Service
- U.S. Geological Survey
- National Science Foundation

Thanks!
Kathryn McEachern, Ph.D.
Research Ecologist

U.S. Geological Survey
Western Ecological Research Center
Channel Islands Field Station,
Ventura, CA

kathryn_mceachern@usgs.gov