Long term effects of burn severity and fire frequency on vegetation in the Mojave Desert

Rob Klinger
Matt Brooks
USGS-BRD

Randy McKinley
USGS-EROS
Many thanks to...

- **Funding organizations**
 - SNPLMA
 - SERDP
 - JFSP

- **The USGS Bishop Crew**
 - Steven Lee
 - Lindsay Swinger
 - Jen Chase
 - Stacy Huskins
 - Laurel Triatik
 - Michael Cleaver

- **The Mojave Mob**
 - Janelle Downs (PNL)
 - Jerry Tagestad (PNL)
 - Emma Underwood (UC Davis)
 - Elaine Chow (UC Davis)

- **UC Merced**
 - Otto Alvarez
 - Qinghua Quo
A Multi-Scale Approach

Remote Sensing Data

Vegetation Plots (Chronosequence)

SDM's

Fire
Climate
NDVI

Structure
(Cover, biomass, density)

Composition
(Identity, relative abundance)

Presence/absence
Abundance
(B. rubens, B. tectorum & E. cicutarium)

Spatial Distribution of Fire
1972 - Present

Unadjusted
Adjusted by SDM's

Vegetation State-Transition & Fire Risk Models

Unadjusted
Adjusted by SDM's
Purpose of Talk

• Emphasize thinking as much as data
• Put post-fire vegetation dynamics in an ecological context
 – Contrast and link traditional views of succession with “newer” concepts of community dynamics
Classic Concepts of Succession...

- Connell-Slatyer pathways
 - Facilitation
 - Tolerance
 - Inhibition
Facilitation Model
End up with what you started with (more or less)
Traditional View of Post-fire Vegetation Dynamics

• **Shortcomings**

 – Simplistic

 – Deterministic and linear

 – Not much data

 – Biased towards low elevation communities

 – *But this does not make it wrong*

 – Observations and data indicate formation of alternative communities
Inhibition Model

Replacement of one community type with another
The Grass-Fire Cycle & Transformer Species

- Annual grasses and alteration of fire regimes
 - *Schismus* spp.
 - *Bromus rubens*
 - *Bromus tectorum*
 - Main concern has been fire frequency
 - But what about severity?
 - Continuous
 - dNBR
 - RdNBR
 - Severity class
Tolerance Model
Mix of “early” and “late” succession species
But Are There Other Useful Ways To Think About Postfire Vegetation Dynamics In The Mojave?

- **Metacommunities**
 - A “community of communities” linked by dispersal and local environmental conditions
 - Interplay between regional and local factors
Expanding Our Thinking About Postfire Vegetation Dynamics In The Mojave

- **Alternative states**
 - Discrete assemblages of species not necessarily in equilibrium
 - Can result from *random fluctuations* in colonization and establishment leading to different succession pathways and a range of communities with distinct species composition
 - Non-directional!
Key Questions

- How does fire influence succession trajectories?
- Are succession patterns similar among elevation zones?
- What is the link between succession pathways and metacommunity dynamics?
- How persistent are alternative states?
Sampling Design

- **Space-for-time**
 - 501 plots (2009)
 - $N = 69$ unburned
 - $N = 432$ 3 - 35 YPF
 - 129 plots (2011)
 - $N = 87$ unburned
 - $N = 42$ 3 - 20 YPF
 - 121 plots (2012)
 - $N = 45$ unburned
 - $N = 126$ 10 - 40 YPF

- **Hierarchical sampling**
 - Elevation zone
 - Years postfire x frequency x severity class
 - Site (1 km2)
 - 3-5 plots per site
 - Plot (0.10 ha)
The Data

• Numerous metrics for succession

• Structure
 – Diversity
 • Hill’s series
 – N0 (species richness)
 – N1 (exponent of H')
 – N2 (Simpsons Index$^{-1}$)
 • E1/D (N2/N0)
 – Woody and herbaceous cover
 – Woody-herb ratio
 • Cover

• Composition
 – Turnover
 – Relative abundance of Bromes, Schismus and Erodium
Time Since Fire, Frequency, and Severity
This ain’t no fully crossed randomized block design!!!

• Two analysis sets
 – Relationship between fire frequency and severity in sites < 6 years postfire
 • 1-3 burns since 1972
 • Four severity classes
 – Relationship between years postfire and severity for sites that burned once in the last 35 years
 • Approximately 75% of burned area in Mojave
 • 3 – 35 years postfire
 • Four severity classes

• Generalized linear mixed models (GLMM’s)

• Canonical Correspondence Analysis
• Woody cover decreases with fire severity and fire frequency
• Herbaceous cover increases with severity across fire frequency
• Consistent pattern across elevation zones
Diversity Patterns
Woody Species – Frequency x Severity

• Summary of general patterns
 – Patterns varied across elevation zones
 – Low
 • Richness decreased with increasing frequency
 • Pattern consistent across severity classes
 – Mid
 • Frequency x severity interaction
 – High
 • Frequency x severity interaction
 • Low severity differed from pattern in mid elevation zone

Consistent with inhibition pathway
Diversity Patterns
Herbaceous species – Frequency x Severity

- **Summary of general patterns**
 - Varied across elevation zones
 - Patterns consistent across severity classes
 - Low
 - Richness decreased across frequency classes
 - Mid and High
 - Richness increased across frequency classes

Consistent with inhibition pathway
Diversity Patterns
Herbaceous species – Frequency x Severity

- **Summary of general patterns**
 - Evenness decreased in all elevation zones
 - Pattern consistent across severity classes

Consistent with inhibition pathway
Structure
Years Postfire (YPF) x Severity (single burns)

- Woody cover eventually similar to unburned conditions in low and moderate severity classes
- Herbaceous cover dominated high severity class
- Consistent across elevation zones

Consistent with tolerance pathway in low and moderate severity burns
Consistent with inhibition pathway in high severity burns
Diversity Patterns
Herbaceous Species – YPF x Severity (single burns)

Consistent with inhibition pathway in low elevation zone
Consistent with facilitation pathway in mid and high elevation zones
Diversity Patterns
Herbaceous Species – YPF x Severity (single burns)

• **Summary of general patterns**
 – Evenness dropped sharply with increasing severity across time and *in all elevation zones*

Consistent with inhibition pathway
Community Composition
Canonical Correspondence Analysis

General trajectories are AWAY from unburned conditions
- Low severity extremely scattered
- Moderate severity moderately scattered
- High severity least scattered
- SOME plots in all classes similar to unburned plots
Composition
Non-native cover - YPF x Severity

- Low elevation zone
Composition
Non-native cover - YPF x Severity

- Mid elevation zone
• High elevation zone
Pulling It All Together

• Evidence for all three pathways
 – Spatially AND temporally variable
 – Varied by metric

• How persistent are alternative states?
 – Can be convergence in structure
 – Long-term change in composition (> 30 years) is common

• Variation in succession patterns highlight utility of metacommunity concept

• Fire frequency, fire severity, and landscape position (elevation) result in patchwork of postfire vegetation communities
And What Might This Mean For Fire Regimes?
Grass Fire Cycle Or Abrupt Transition?

• Can have rapid transitions to alternative states
 – Fire as an event instead of series of burns at short return intervals

• Why the rapid transition to non-native annual communities?
 – Dominate seed bank of unburned communities *at all elevations*
 – Individual and additive effects from species sorting
Sorting Of Non-native Annuals Species Along Environmental Gradients

- Overlapping but shifting abundance peaks
- Strong additive effects at low and mid elevations

Generalized Additive Models

Elevation

Precipitation

dNBR

E. cicutarium

B. rubens

B. tectorum
Multiple, Unpredictable Alternative States